File size: 2,779 Bytes
8084f28 a17b7ec 8084f28 6c62aa0 8084f28 6c62aa0 8084f28 6c62aa0 8084f28 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 |
---
language: en
datasets:
- squad_v2
license: mit
thumbnail: https://thumb.tildacdn.com/tild3433-3637-4830-a533-353833613061/-/resize/720x/-/format/webp/germanquad.jpg
tags:
- exbert
model-index:
- name: deepset/tinybert-6l-768d-squad2
results:
- task:
type: question-answering
name: Question Answering
dataset:
name: squad_v2
type: squad_v2
config: squad_v2
split: validation
metrics:
- name: Exact Match
type: exact_match
value: 73.8248
verified: true
- name: F1
type: f1
value: 77.1684
verified: true
---
## Overview
**Language model:** deepset/tinybert-6L-768D-squad2
**Language:** English
**Training data:** SQuAD 2.0 training set x 20 augmented + SQuAD 2.0 training set without augmentation
**Eval data:** SQuAD 2.0 dev set
**Infrastructure**: 1x V100 GPU
**Published**: Dec 8th, 2021
## Details
- haystack's intermediate layer and prediction layer distillation features were used for training (based on [TinyBERT](https://arxiv.org/pdf/1909.10351.pdf)). deepset/bert-base-uncased-squad2 was used as the teacher model and huawei-noah/TinyBERT_General_6L_768D was used as the student model.
## Hyperparameters
### Intermediate layer distillation
```
batch_size = 26
n_epochs = 5
max_seq_len = 384
learning_rate = 5e-5
lr_schedule = LinearWarmup
embeds_dropout_prob = 0.1
temperature = 1
```
### Prediction layer distillation
```
batch_size = 26
n_epochs = 5
max_seq_len = 384
learning_rate = 3e-5
lr_schedule = LinearWarmup
embeds_dropout_prob = 0.1
temperature = 1
distillation_loss_weight = 1.0
```
## Performance
```
"exact": 71.87736882001179
"f1": 76.36111895973675
```
## Authors
- Timo M枚ller: `timo.moeller [at] deepset.ai`
- Julian Risch: `julian.risch [at] deepset.ai`
- Malte Pietsch: `malte.pietsch [at] deepset.ai`
- Michel Bartels: `michel.bartels [at] deepset.ai`
## About us
![deepset logo](https://workablehr.s3.amazonaws.com/uploads/account/logo/476306/logo)
We bring NLP to the industry via open source!
Our focus: Industry specific language models & large scale QA systems.
Some of our work:
- [German BERT (aka "bert-base-german-cased")](https://deepset.ai/german-bert)
- [GermanQuAD and GermanDPR datasets and models (aka "gelectra-base-germanquad", "gbert-base-germandpr")](https://deepset.ai/germanquad)
- [FARM](https://github.com/deepset-ai/FARM)
- [Haystack](https://github.com/deepset-ai/haystack/)
Get in touch:
[Twitter](https://twitter.com/deepset_ai) | [LinkedIn](https://www.linkedin.com/company/deepset-ai/) | [Slack](https://haystack.deepset.ai/community/join) | [GitHub Discussions](https://github.com/deepset-ai/haystack/discussions) | [Website](https://deepset.ai)
By the way: [we're hiring!](http://www.deepset.ai/jobs) |