File size: 5,927 Bytes
7f49ac7
 
 
 
 
 
 
df20d82
7f49ac7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
df20d82
 
 
 
 
 
 
 
 
 
7f49ac7
 
 
 
 
df20d82
7f49ac7
 
 
 
 
c7c9ff6
7f49ac7
 
df20d82
7f49ac7
 
 
 
 
 
 
 
df20d82
 
 
 
 
7f49ac7
df20d82
 
 
 
 
7f49ac7
 
 
 
 
 
 
 
df20d82
7f49ac7
 
 
 
 
 
df20d82
 
 
 
 
 
 
 
 
 
 
 
7f49ac7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
import torch
from torch import nn
from torch import optim
import torch.nn.functional as F
from torchvision.datasets import ImageFolder
from torch.utils.data import DataLoader
from torchvision import utils as vutils
from huggingface_hub import PyTorchModelHubMixin

import os
import random
import argparse
from tqdm import tqdm

from models import Generator


def load_params(model, new_param):
    for p, new_p in zip(model.parameters(), new_param):
        p.data.copy_(new_p)

def resize(img):
    return F.interpolate(img, size=256)

def batch_generate(zs, netG, batch=8):
    g_images = []
    with torch.no_grad():
        for i in range(len(zs)//batch):
            g_images.append( netG(zs[i*batch:(i+1)*batch]).cpu() )
        if len(zs)%batch>0:
            g_images.append( netG(zs[-(len(zs)%batch):]).cpu() )
    return torch.cat(g_images)

def batch_save(images, folder_name):
    if not os.path.exists(folder_name):
        os.mkdir(folder_name)
    for i, image in enumerate(images):
        vutils.save_image(image.add(1).mul(0.5), folder_name+'/%d.jpg'%i)

# To push the model to Huggingface model hub
class MyFastGanModel(nn.Module, PyTorchModelHubMixin):

    def __init__(self, config: dict) -> None:
        super().__init__()

        self.model = Generator( ngf=config["ngf"], nz=config["noise_dim"], nc=config["nc"], im_size=config["im_size"])

    def forward(self, x):
        return self.model(x)

if __name__ == "__main__":
    parser = argparse.ArgumentParser(
        description='generate images'
    )
    parser.add_argument('--ckpt', type=str, default="/work/vajira/DL/FastGAN-pytorch/train_results/test1_4ch/models/all_50000.pth")
    parser.add_argument('--artifacts', type=str, default=".", help='path to artifacts.')
    parser.add_argument('--cuda', type=int, default=0, help='index of gpu to use')
    parser.add_argument('--start_iter', type=int, default=6)
    parser.add_argument('--end_iter', type=int, default=10)

    parser.add_argument('--dist', type=str, default='test_out')
    parser.add_argument('--size', type=int, default=256)
    parser.add_argument('--batch', default=1, type=int, help='batch size')
    parser.add_argument('--n_sample', type=int, default=1)
    parser.add_argument('--big', action='store_true')
    parser.add_argument('--im_size', type=int, default=256)
    parser.add_argument("--save_option", default="image_and_mask", help="Options to svae output, image_only, mask_only, image_and_mask", choices=["image_only","mask_only", "image_and_mask"])
    parser.set_defaults(big=False)
    args = parser.parse_args()

    noise_dim = 256
    device = torch.device('cuda:%d'%(args.cuda))

    # adding the model to the model hub
    config={"ngf":64, "noise_dim":noise_dim, "nc":4, "im_size":args.im_size}
    net_ig = MyFastGanModel(config=config)     

    

    # exit
    #exit()    
    
    #net_ig = model #Generator( ngf=64, nz=noise_dim, nc=4, im_size=args.im_size)#, big=args.big )
    net_ig.to(device)

    #for epoch in [10000*i for i in range(args.start_iter, args.end_iter+1)]:
    ckpt = args.ckpt #f"{args.artifacts}/models/{epoch}.pth"
    #checkpoint = torch.load(ckpt, map_location=lambda a,b: a)
    checkpoint = torch.load(ckpt)
    # Remove prefix `module`.
    checkpoint['g'] = {k.replace('module.', ''): v for k, v in checkpoint['g'].items()}
    net_ig.model.load_state_dict(checkpoint['g'])
    #load_params(net_ig, checkpoint['g_ema'])

    #net_ig.eval()
    print("load checkpoint success")

    net_ig.to(device)
    # Save locally
    net_ig.save_pretrained("pre_trained_checkpoint_4ch", config=config)  # Save the model locally
    print("Model saved locally. Pushing to Huggingface model hub...")

    # Push to the Huggingface model hub
    # push to the hub
    net_ig.push_to_hub("deepsynthbody/deepfake_gi_fastGAN", config=config)


    print("pushed to the Huggingface model hub. Done.")
    exit()  


    del checkpoint

    #dist = 'eval_%d'%(epoch)
    #dist = os.path.join(args.dist, 'img')
    dist = args.dist
    os.makedirs(dist, exist_ok=True)

    with torch.no_grad():
        for i in tqdm(range(args.n_sample//args.batch)):
            noise = torch.randn(args.batch, noise_dim).to(device)
            g_imgs = net_ig(noise)[0]
            g_imgs = F.interpolate(g_imgs, 512)
            
            
            for j, g_img in enumerate( g_imgs ):
                #print("img sahpe=", g_img.shape)
                g_mask = g_img.add(1).mul(0.5)[-1, :, :].expand(3, -1, -1)
                g_img = g_img.add(1).mul(0.5)[0:3, :, :]

                # Clean generated data using clamping
                g_mask = torch.clamp(g_mask, min=0, max=1)
                g_img = torch.clamp(g_img, min=0, max=1)
                #print(g_mask.type())
                g_mask = (g_mask > 0.5) * 1.0
                #print(g_mask.type())

                #print("gmask_min:", g_mask.min())
                #print("gmask_max:", g_mask.max())
                #exit()
                
                #print("img sahpe=", g_img.shape)

                if args.save_option == "image_and_mask":
                    vutils.save_image(g_img, 
                        os.path.join(dist, '%d_img.png'%(i*args.batch+j)))#, normalize=True, range=(-1,1))
                    vutils.save_image(g_mask, 
                        os.path.join(dist, '%d_mask.png'%(i*args.batch+j))) #, normalize=True, range=(0,1))

                elif args.save_option == "image_only":
                    vutils.save_image(g_img, 
                        os.path.join(dist, '%d_img.png'%(i*args.batch+j)))#, normalize=True, range=(-1,1))
                    
                elif args.save_option == "mask_only":
                    vutils.save_image(g_mask, 
                        os.path.join(dist, '%d_mask.png'%(i*args.batch+j)))#, normalize=True, range=(-1,1))
                else:
                    print("wrong choise to save option.")