Delete app.py
Browse files
app.py
DELETED
@@ -1,84 +0,0 @@
|
|
1 |
-
import streamlit as st
|
2 |
-
import torch
|
3 |
-
from transformers import AlbertTokenizer, AlbertForSequenceClassification, AlbertConfig
|
4 |
-
import plotly.graph_objects as go
|
5 |
-
|
6 |
-
# URL of the logo
|
7 |
-
logo_url = "https://dejan.ai/wp-content/uploads/2024/02/dejan-300x103.png"
|
8 |
-
|
9 |
-
# Display the logo at the top using st.logo
|
10 |
-
st.logo(logo_url, link="https://dejan.ai")
|
11 |
-
|
12 |
-
# Streamlit app title and description
|
13 |
-
st.title("Search Query Form Classifier")
|
14 |
-
st.write("Ambiguous search queries are candidates for query expansion. Our model identifies such queries with an 80 percent accuracy and is deployed in a batch processing pipeline directly connected with Google Search Console API. In this demo you can test the model capability by testing individual queries.")
|
15 |
-
st.write("Enter a query to check if it's well-formed:")
|
16 |
-
|
17 |
-
# Load the model and tokenizer from the Hugging Face Model Hub
|
18 |
-
model_name = 'dejanseo/Query-Quality-Classifier'
|
19 |
-
tokenizer = AlbertTokenizer.from_pretrained(model_name)
|
20 |
-
model = AlbertForSequenceClassification.from_pretrained(model_name)
|
21 |
-
|
22 |
-
# Set the model to evaluation mode
|
23 |
-
model.eval()
|
24 |
-
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
25 |
-
model.to(device)
|
26 |
-
|
27 |
-
# User input
|
28 |
-
user_input = st.text_input("Query:", "What is?")
|
29 |
-
st.write("Developed by [Dejan AI](https://dejan.ai/blog/search-query-quality-classifier/)")
|
30 |
-
|
31 |
-
def classify_query(query):
|
32 |
-
# Tokenize input
|
33 |
-
inputs = tokenizer.encode_plus(
|
34 |
-
query,
|
35 |
-
add_special_tokens=True,
|
36 |
-
max_length=32,
|
37 |
-
padding='max_length',
|
38 |
-
truncation=True,
|
39 |
-
return_attention_mask=True,
|
40 |
-
return_tensors='pt'
|
41 |
-
)
|
42 |
-
|
43 |
-
input_ids = inputs['input_ids'].to(device)
|
44 |
-
attention_mask = inputs['attention_mask'].to(device)
|
45 |
-
|
46 |
-
# Perform inference
|
47 |
-
with torch.no_grad():
|
48 |
-
outputs = model(input_ids, attention_mask=attention_mask)
|
49 |
-
logits = outputs.logits
|
50 |
-
softmax_scores = torch.softmax(logits, dim=1).cpu().numpy()[0]
|
51 |
-
confidence = softmax_scores[1] * 100 # Confidence for well-formed class
|
52 |
-
|
53 |
-
return confidence
|
54 |
-
|
55 |
-
# Check and display classification
|
56 |
-
if user_input:
|
57 |
-
confidence = classify_query(user_input)
|
58 |
-
|
59 |
-
# Plotly gauge
|
60 |
-
fig = go.Figure(go.Indicator(
|
61 |
-
mode="gauge+number",
|
62 |
-
value=confidence,
|
63 |
-
title={'text': "Well-formedness Confidence"},
|
64 |
-
gauge={
|
65 |
-
'axis': {'range': [0, 100]},
|
66 |
-
'bar': {'color': "darkblue"},
|
67 |
-
'steps': [
|
68 |
-
{'range': [0, 50], 'color': "red"},
|
69 |
-
{'range': [50, 100], 'color': "green"}
|
70 |
-
],
|
71 |
-
'threshold': {
|
72 |
-
'line': {'color': "black", 'width': 4},
|
73 |
-
'thickness': 0.75,
|
74 |
-
'value': confidence
|
75 |
-
}
|
76 |
-
}
|
77 |
-
))
|
78 |
-
|
79 |
-
st.plotly_chart(fig)
|
80 |
-
|
81 |
-
if confidence >= 50:
|
82 |
-
st.success(f"The query is likely well-formed with {confidence:.2f}% confidence.")
|
83 |
-
else:
|
84 |
-
st.error(f"The query is likely not well-formed with {100 - confidence:.2f}% confidence.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|