File size: 8,998 Bytes
4c8c729
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
# automatically generated by the FlatBuffers compiler, do not modify

# namespace: libtextclassifier3

import flatbuffers
from flatbuffers.compat import import_numpy
np = import_numpy()

class PodNerModel(object):
    __slots__ = ['_tab']

    @classmethod
    def GetRootAsPodNerModel(cls, buf, offset):
        n = flatbuffers.encode.Get(flatbuffers.packer.uoffset, buf, offset)
        x = PodNerModel()
        x.Init(buf, n + offset)
        return x

    @classmethod
    def PodNerModelBufferHasIdentifier(cls, buf, offset, size_prefixed=False):
        return flatbuffers.util.BufferHasIdentifier(buf, offset, b"\x54\x43\x32\x20", size_prefixed=size_prefixed)

    # PodNerModel
    def Init(self, buf, pos):
        self._tab = flatbuffers.table.Table(buf, pos)

    # PodNerModel
    def TfliteModel(self, j):
        o = flatbuffers.number_types.UOffsetTFlags.py_type(self._tab.Offset(4))
        if o != 0:
            a = self._tab.Vector(o)
            return self._tab.Get(flatbuffers.number_types.Uint8Flags, a + flatbuffers.number_types.UOffsetTFlags.py_type(j * 1))
        return 0

    # PodNerModel
    def TfliteModelAsNumpy(self):
        o = flatbuffers.number_types.UOffsetTFlags.py_type(self._tab.Offset(4))
        if o != 0:
            return self._tab.GetVectorAsNumpy(flatbuffers.number_types.Uint8Flags, o)
        return 0

    # PodNerModel
    def TfliteModelLength(self):
        o = flatbuffers.number_types.UOffsetTFlags.py_type(self._tab.Offset(4))
        if o != 0:
            return self._tab.VectorLen(o)
        return 0

    # PodNerModel
    def TfliteModelIsNone(self):
        o = flatbuffers.number_types.UOffsetTFlags.py_type(self._tab.Offset(4))
        return o == 0

    # PodNerModel
    def WordPieceVocab(self, j):
        o = flatbuffers.number_types.UOffsetTFlags.py_type(self._tab.Offset(6))
        if o != 0:
            a = self._tab.Vector(o)
            return self._tab.Get(flatbuffers.number_types.Uint8Flags, a + flatbuffers.number_types.UOffsetTFlags.py_type(j * 1))
        return 0

    # PodNerModel
    def WordPieceVocabAsNumpy(self):
        o = flatbuffers.number_types.UOffsetTFlags.py_type(self._tab.Offset(6))
        if o != 0:
            return self._tab.GetVectorAsNumpy(flatbuffers.number_types.Uint8Flags, o)
        return 0

    # PodNerModel
    def WordPieceVocabLength(self):
        o = flatbuffers.number_types.UOffsetTFlags.py_type(self._tab.Offset(6))
        if o != 0:
            return self._tab.VectorLen(o)
        return 0

    # PodNerModel
    def WordPieceVocabIsNone(self):
        o = flatbuffers.number_types.UOffsetTFlags.py_type(self._tab.Offset(6))
        return o == 0

    # PodNerModel
    def LowercaseInput(self):
        o = flatbuffers.number_types.UOffsetTFlags.py_type(self._tab.Offset(8))
        if o != 0:
            return bool(self._tab.Get(flatbuffers.number_types.BoolFlags, o + self._tab.Pos))
        return True

    # PodNerModel
    def LogitsIndexInOutputTensor(self):
        o = flatbuffers.number_types.UOffsetTFlags.py_type(self._tab.Offset(10))
        if o != 0:
            return self._tab.Get(flatbuffers.number_types.Int32Flags, o + self._tab.Pos)
        return 0

    # PodNerModel
    def AppendFinalPeriod(self):
        o = flatbuffers.number_types.UOffsetTFlags.py_type(self._tab.Offset(12))
        if o != 0:
            return bool(self._tab.Get(flatbuffers.number_types.BoolFlags, o + self._tab.Pos))
        return False

    # PodNerModel
    def PriorityScore(self):
        o = flatbuffers.number_types.UOffsetTFlags.py_type(self._tab.Offset(14))
        if o != 0:
            return self._tab.Get(flatbuffers.number_types.Float32Flags, o + self._tab.Pos)
        return 0.0

    # PodNerModel
    def MaxNumWordpieces(self):
        o = flatbuffers.number_types.UOffsetTFlags.py_type(self._tab.Offset(16))
        if o != 0:
            return self._tab.Get(flatbuffers.number_types.Int32Flags, o + self._tab.Pos)
        return 128

    # PodNerModel
    def SlidingWindowNumWordpiecesOverlap(self):
        o = flatbuffers.number_types.UOffsetTFlags.py_type(self._tab.Offset(18))
        if o != 0:
            return self._tab.Get(flatbuffers.number_types.Int32Flags, o + self._tab.Pos)
        return 20

    # PodNerModel
    def Labels(self, j):
        o = flatbuffers.number_types.UOffsetTFlags.py_type(self._tab.Offset(22))
        if o != 0:
            x = self._tab.Vector(o)
            x += flatbuffers.number_types.UOffsetTFlags.py_type(j) * 4
            x = self._tab.Indirect(x)
            from libtextclassifier3.PodNerModel_.Label import Label
            obj = Label()
            obj.Init(self._tab.Bytes, x)
            return obj
        return None

    # PodNerModel
    def LabelsLength(self):
        o = flatbuffers.number_types.UOffsetTFlags.py_type(self._tab.Offset(22))
        if o != 0:
            return self._tab.VectorLen(o)
        return 0

    # PodNerModel
    def LabelsIsNone(self):
        o = flatbuffers.number_types.UOffsetTFlags.py_type(self._tab.Offset(22))
        return o == 0

    # PodNerModel
    def MaxRatioUnknownWordpieces(self):
        o = flatbuffers.number_types.UOffsetTFlags.py_type(self._tab.Offset(24))
        if o != 0:
            return self._tab.Get(flatbuffers.number_types.Float32Flags, o + self._tab.Pos)
        return 0.1

    # PodNerModel
    def Collections(self, j):
        o = flatbuffers.number_types.UOffsetTFlags.py_type(self._tab.Offset(26))
        if o != 0:
            x = self._tab.Vector(o)
            x += flatbuffers.number_types.UOffsetTFlags.py_type(j) * 4
            x = self._tab.Indirect(x)
            from libtextclassifier3.PodNerModel_.Collection import Collection
            obj = Collection()
            obj.Init(self._tab.Bytes, x)
            return obj
        return None

    # PodNerModel
    def CollectionsLength(self):
        o = flatbuffers.number_types.UOffsetTFlags.py_type(self._tab.Offset(26))
        if o != 0:
            return self._tab.VectorLen(o)
        return 0

    # PodNerModel
    def CollectionsIsNone(self):
        o = flatbuffers.number_types.UOffsetTFlags.py_type(self._tab.Offset(26))
        return o == 0

    # PodNerModel
    def MinNumberOfTokens(self):
        o = flatbuffers.number_types.UOffsetTFlags.py_type(self._tab.Offset(28))
        if o != 0:
            return self._tab.Get(flatbuffers.number_types.Int32Flags, o + self._tab.Pos)
        return 1

    # PodNerModel
    def MinNumberOfWordpieces(self):
        o = flatbuffers.number_types.UOffsetTFlags.py_type(self._tab.Offset(30))
        if o != 0:
            return self._tab.Get(flatbuffers.number_types.Int32Flags, o + self._tab.Pos)
        return 1

def PodNerModelStart(builder): builder.StartObject(14)
def PodNerModelAddTfliteModel(builder, tfliteModel): builder.PrependUOffsetTRelativeSlot(0, flatbuffers.number_types.UOffsetTFlags.py_type(tfliteModel), 0)
def PodNerModelStartTfliteModelVector(builder, numElems): return builder.StartVector(1, numElems, 1)
def PodNerModelAddWordPieceVocab(builder, wordPieceVocab): builder.PrependUOffsetTRelativeSlot(1, flatbuffers.number_types.UOffsetTFlags.py_type(wordPieceVocab), 0)
def PodNerModelStartWordPieceVocabVector(builder, numElems): return builder.StartVector(1, numElems, 1)
def PodNerModelAddLowercaseInput(builder, lowercaseInput): builder.PrependBoolSlot(2, lowercaseInput, 1)
def PodNerModelAddLogitsIndexInOutputTensor(builder, logitsIndexInOutputTensor): builder.PrependInt32Slot(3, logitsIndexInOutputTensor, 0)
def PodNerModelAddAppendFinalPeriod(builder, appendFinalPeriod): builder.PrependBoolSlot(4, appendFinalPeriod, 0)
def PodNerModelAddPriorityScore(builder, priorityScore): builder.PrependFloat32Slot(5, priorityScore, 0.0)
def PodNerModelAddMaxNumWordpieces(builder, maxNumWordpieces): builder.PrependInt32Slot(6, maxNumWordpieces, 128)
def PodNerModelAddSlidingWindowNumWordpiecesOverlap(builder, slidingWindowNumWordpiecesOverlap): builder.PrependInt32Slot(7, slidingWindowNumWordpiecesOverlap, 20)
def PodNerModelAddLabels(builder, labels): builder.PrependUOffsetTRelativeSlot(9, flatbuffers.number_types.UOffsetTFlags.py_type(labels), 0)
def PodNerModelStartLabelsVector(builder, numElems): return builder.StartVector(4, numElems, 4)
def PodNerModelAddMaxRatioUnknownWordpieces(builder, maxRatioUnknownWordpieces): builder.PrependFloat32Slot(10, maxRatioUnknownWordpieces, 0.1)
def PodNerModelAddCollections(builder, collections): builder.PrependUOffsetTRelativeSlot(11, flatbuffers.number_types.UOffsetTFlags.py_type(collections), 0)
def PodNerModelStartCollectionsVector(builder, numElems): return builder.StartVector(4, numElems, 4)
def PodNerModelAddMinNumberOfTokens(builder, minNumberOfTokens): builder.PrependInt32Slot(12, minNumberOfTokens, 1)
def PodNerModelAddMinNumberOfWordpieces(builder, minNumberOfWordpieces): builder.PrependInt32Slot(13, minNumberOfWordpieces, 1)
def PodNerModelEnd(builder): return builder.EndObject()