File size: 10,082 Bytes
a85f7db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
import streamlit as st
import tensorflow as tf
import sentencepiece as spm
import numpy as np
from scipy.spatial.distance import cosine
import pandas as pd
from openTSNE import TSNE
import plotly.express as px
import plotly.graph_objects as go

# Set Streamlit layout to wide mode and remove padding
st.set_page_config(layout="wide")

# Remove default padding
st.markdown("""
    <style>
        .block-container {
            padding-top: 1rem;
            padding-bottom: 0rem;
            padding-left: 1rem;
            padding-right: 1rem;
        }
    </style>
    """, unsafe_allow_html=True)

# Load the TFLite model and SentencePiece model
tflite_model_path = "model.tflite"
spm_model_path = "sentencepiece.model"

sp = spm.SentencePieceProcessor()
sp.load(spm_model_path)

interpreter = tf.lite.Interpreter(model_path=tflite_model_path)
interpreter.allocate_tensors()

input_details = interpreter.get_input_details()
output_details = interpreter.get_output_details()
required_input_length = 64  # Fixed length of 64 tokens

# Function to preprocess text input
def preprocess_text(text, sp, required_length):
    input_ids = sp.encode(text, out_type=int)
    input_ids = input_ids[:required_length] + [0] * (required_length - len(input_ids))
    return np.array(input_ids, dtype=np.int32).reshape(1, -1)

# Function to generate embeddings
def generate_embeddings(text):
    input_data = preprocess_text(text, sp, required_input_length)
    interpreter.set_tensor(input_details[0]['index'], input_data)
    interpreter.invoke()
    embedding = interpreter.get_tensor(output_details[0]['index'])
    return embedding.flatten()

# Function to calculate similarity scores between sentences
def calculate_similarity(embedding1, embedding2):
    return 1 - cosine(embedding1, embedding2)

# Predefined sentence sets
preset_sentences_a = [
    "Dan Petrovic predicted conversational search in 2013.",
    "Understanding user intent is key to effective SEO.",
    "Dejan SEO has been a leader in data-driven SEO.",
    "Machine learning is transforming search engines.",
    "The future of search is AI-driven and personalized.",
    "Search algorithms are evolving to better match user intent.",
    "AI technologies enhance digital marketing strategies."
]

preset_sentences_b = [
    "Advances in machine learning reshape how search engines operate.",
    "Personalized content is becoming more prevalent with AI.",
    "Customer behavior insights are crucial for marketing strategies.",
    "Dan Petrovic anticipated the rise of chat-based search interactions.",
    "Dejan SEO is recognized for innovative SEO research and analysis.",
    "Quantum computing is advancing rapidly in the tech world.",
    "Studying user behavior can improve the effectiveness of online ads."
]

# Initialize session state for input fields if not already set
if "input_text_a" not in st.session_state:
    st.session_state["input_text_a"] = "\n".join(preset_sentences_a)
if "input_text_b" not in st.session_state:
    st.session_state["input_text_b"] = "\n".join(preset_sentences_b)

# Clear button to reset text areas
if st.button("Clear Fields"):
    st.session_state["input_text_a"] = ""
    st.session_state["input_text_b"] = ""

# Side-by-side layout for Set A and Set B inputs
col1, col2 = st.columns(2)

with col1:
    st.subheader("Set A Sentences")
    input_text_a = st.text_area("Set A", value=st.session_state["input_text_a"], height=200)

with col2:
    st.subheader("Set B Sentences")
    input_text_b = st.text_area("Set B", value=st.session_state["input_text_b"], height=200)

# Slider to control t-SNE iteration steps
iterations = st.slider("Number of t-SNE Iterations (Higher values = more refined clusters)", 250, 1000, step=250)

# Similarity threshold slider
similarity_threshold = st.slider("Similarity Threshold", 0.0, 1.0, 0.5, 0.05)

# Submit button
if st.button("Calculate Similarity"):
    sentences_a = [line.strip() for line in input_text_a.split("\n") if line.strip()]
    sentences_b = [line.strip() for line in input_text_b.split("\n") if line.strip()]

    if len(sentences_a) > 0 and len(sentences_b) > 0:
        # Generate embeddings for both sets
        embeddings_a = [generate_embeddings(sentence) for sentence in sentences_a]
        embeddings_b = [generate_embeddings(sentence) for sentence in sentences_b]

        # Combine sentences and embeddings for both sets
        all_sentences = sentences_a + sentences_b
        all_embeddings = np.array(embeddings_a + embeddings_b)
        labels = ["Set A"] * len(sentences_a) + ["Set B"] * len(sentences_b)

        # Calculate similarity matrix
        similarity_matrix = np.zeros((len(sentences_a), len(sentences_b)))
        for i, emb_a in enumerate(embeddings_a):
            for j, emb_b in enumerate(embeddings_b):
                similarity_matrix[i, j] = calculate_similarity(emb_a, emb_b)

        # Greedy approach to find best matches above the threshold
        used_a = set()
        used_b = set()
        matches = []
        pairs = []
        for i in range(len(sentences_a)):
            for j in range(len(sentences_b)):
                pairs.append((i, j, similarity_matrix[i, j]))

        # Sort pairs by highest similarity first
        pairs.sort(key=lambda x: x[2], reverse=True)

        for i, j, sim in pairs:
            if i not in used_a and j not in used_b and sim >= similarity_threshold:
                matches.append((i, j, sim))
                used_a.add(i)
                used_b.add(j)

        # --------------------------------------
        # 1) SHOW MATCH TABLE AT THE TOP USING st.dataframe (FILLING THE SCREEN)
        # --------------------------------------
        if len(matches) == 0:
            st.warning("No sentence pairs exceeded the similarity threshold.")
        else:
            # Create a DataFrame for the matched pairs with original order information
            df_matches = pd.DataFrame(
                [
                    (i+1, sentences_a[i], j+1, sentences_b[j], round(sim, 3))
                    for (i, j, sim) in matches
                ],
                columns=["Set A Order", "Set A Sentence", "Set B Order", "Set B Sentence", "Similarity"]
            )
            st.subheader("Matched Sentences (Above Threshold)")
            st.dataframe(df_matches, use_container_width=True)

        # --------------------------------------
        # 2) THEN PERFORM T-SNE AND SHOW 3D PLOT
        # --------------------------------------
        perplexity_value = min(5, len(all_sentences) - 1)

        tsne = TSNE(
            n_components=3,
            perplexity=perplexity_value,
            n_iter=iterations,
            initialization="pca",
            random_state=42
        )
        tsne_results = tsne.fit(all_embeddings)

        # Prepare DataFrame for Plotly
        df_tsne = pd.DataFrame({
            "Sentence": all_sentences,
            "Set": labels,
            "X": tsne_results[:, 0],
            "Y": tsne_results[:, 1],
            "Z": tsne_results[:, 2]
        })

        # Create 3D scatter plot with connections
        fig = go.Figure()

        # Add scatter points for Set A
        fig.add_trace(go.Scatter3d(
            x=df_tsne[df_tsne["Set"] == "Set A"]["X"],
            y=df_tsne[df_tsne["Set"] == "Set A"]["Y"],
            z=df_tsne[df_tsne["Set"] == "Set A"]["Z"],
            text=df_tsne[df_tsne["Set"] == "Set A"]["Sentence"],
            mode='markers',
            name='Set A',
            marker=dict(size=5, color='blue')
        ))

        # Add scatter points for Set B
        fig.add_trace(go.Scatter3d(
            x=df_tsne[df_tsne["Set"] == "Set B"]["X"],
            y=df_tsne[df_tsne["Set"] == "Set B"]["Y"],
            z=df_tsne[df_tsne["Set"] == "Set B"]["Z"],
            text=df_tsne[df_tsne["Set"] == "Set B"]["Sentence"],
            mode='markers',
            name='Set B',
            marker=dict(size=5, color='red')
        ))

        # Optionally, add lines for sentence pairs above threshold
        for i, emb_a in enumerate(embeddings_a):
            pos_a = tsne_results[i]
            for j, emb_b in enumerate(embeddings_b):
                sim = similarity_matrix[i, j]
                if sim >= similarity_threshold:
                    pos_b = tsne_results[j + len(sentences_a)]
                    fig.add_trace(go.Scatter3d(
                        x=[pos_a[0], pos_b[0]],
                        y=[pos_a[1], pos_b[1]],
                        z=[pos_a[2], pos_b[2]],
                        mode='lines',
                        line=dict(color=f'rgba(150,150,150,{sim})', width=2),
                        name=f'Similarity: {sim:.2f}',
                        showlegend=False
                    ))

        fig.update_layout(
            title="3D Visualization of Sentence Similarity with Connections",
            width=1200,
            height=800,
            scene=dict(
                xaxis_title="t-SNE Dimension 1",
                yaxis_title="t-SNE Dimension 2",
                zaxis_title="t-SNE Dimension 3"
            )
        )
        st.plotly_chart(fig)

        # --------------------------------------
        # 3) SIMILARITY HEATMAP
        # --------------------------------------
        fig_heatmap = go.Figure(data=go.Heatmap(
            z=similarity_matrix,
            x=[f"B{i+1}" for i in range(len(sentences_b))],
            y=[f"A{i+1}" for i in range(len(sentences_a))],
            colorscale="Viridis",
            text=np.round(similarity_matrix, 2),
            texttemplate="%{text}",
            textfont={"size": 10},
            hoverongaps=False
        ))

        fig_heatmap.update_layout(
            title="Similarity Heatmap between Set A and Set B",
            width=None,  # Full width
            height=400,
            margin=dict(l=20, r=20, t=40, b=20),
            xaxis_title="Set B Sentences",
            yaxis_title="Set A Sentences"
        )

        st.plotly_chart(fig_heatmap)

    else:
        st.warning("Please enter sentences in both Set A and Set B.")