|
|
|
|
|
|
|
|
|
import flatbuffers |
|
from flatbuffers.compat import import_numpy |
|
np = import_numpy() |
|
|
|
class VocabModel(object): |
|
__slots__ = ['_tab'] |
|
|
|
@classmethod |
|
def GetRootAsVocabModel(cls, buf, offset): |
|
n = flatbuffers.encode.Get(flatbuffers.packer.uoffset, buf, offset) |
|
x = VocabModel() |
|
x.Init(buf, n + offset) |
|
return x |
|
|
|
@classmethod |
|
def VocabModelBufferHasIdentifier(cls, buf, offset, size_prefixed=False): |
|
return flatbuffers.util.BufferHasIdentifier(buf, offset, b"\x54\x43\x32\x20", size_prefixed=size_prefixed) |
|
|
|
|
|
def Init(self, buf, pos): |
|
self._tab = flatbuffers.table.Table(buf, pos) |
|
|
|
|
|
def VocabTrie(self, j): |
|
o = flatbuffers.number_types.UOffsetTFlags.py_type(self._tab.Offset(4)) |
|
if o != 0: |
|
a = self._tab.Vector(o) |
|
return self._tab.Get(flatbuffers.number_types.Uint8Flags, a + flatbuffers.number_types.UOffsetTFlags.py_type(j * 1)) |
|
return 0 |
|
|
|
|
|
def VocabTrieAsNumpy(self): |
|
o = flatbuffers.number_types.UOffsetTFlags.py_type(self._tab.Offset(4)) |
|
if o != 0: |
|
return self._tab.GetVectorAsNumpy(flatbuffers.number_types.Uint8Flags, o) |
|
return 0 |
|
|
|
|
|
def VocabTrieLength(self): |
|
o = flatbuffers.number_types.UOffsetTFlags.py_type(self._tab.Offset(4)) |
|
if o != 0: |
|
return self._tab.VectorLen(o) |
|
return 0 |
|
|
|
|
|
def VocabTrieIsNone(self): |
|
o = flatbuffers.number_types.UOffsetTFlags.py_type(self._tab.Offset(4)) |
|
return o == 0 |
|
|
|
|
|
def BeginnerLevel(self): |
|
o = flatbuffers.number_types.UOffsetTFlags.py_type(self._tab.Offset(6)) |
|
if o != 0: |
|
x = self._tab.Indirect(o + self._tab.Pos) |
|
from libtextclassifier3.BitVectorData import BitVectorData |
|
obj = BitVectorData() |
|
obj.Init(self._tab.Bytes, x) |
|
return obj |
|
return None |
|
|
|
|
|
def DoNotTriggerInUpperCase(self): |
|
o = flatbuffers.number_types.UOffsetTFlags.py_type(self._tab.Offset(8)) |
|
if o != 0: |
|
x = self._tab.Indirect(o + self._tab.Pos) |
|
from libtextclassifier3.BitVectorData import BitVectorData |
|
obj = BitVectorData() |
|
obj.Init(self._tab.Bytes, x) |
|
return obj |
|
return None |
|
|
|
|
|
def TriggeringLocales(self): |
|
o = flatbuffers.number_types.UOffsetTFlags.py_type(self._tab.Offset(10)) |
|
if o != 0: |
|
return self._tab.String(o + self._tab.Pos) |
|
return None |
|
|
|
|
|
def TargetClassificationScore(self): |
|
o = flatbuffers.number_types.UOffsetTFlags.py_type(self._tab.Offset(12)) |
|
if o != 0: |
|
return self._tab.Get(flatbuffers.number_types.Float32Flags, o + self._tab.Pos) |
|
return 1.0 |
|
|
|
|
|
def PriorityScore(self): |
|
o = flatbuffers.number_types.UOffsetTFlags.py_type(self._tab.Offset(14)) |
|
if o != 0: |
|
return self._tab.Get(flatbuffers.number_types.Float32Flags, o + self._tab.Pos) |
|
return 0.0 |
|
|
|
def VocabModelStart(builder): builder.StartObject(6) |
|
def VocabModelAddVocabTrie(builder, vocabTrie): builder.PrependUOffsetTRelativeSlot(0, flatbuffers.number_types.UOffsetTFlags.py_type(vocabTrie), 0) |
|
def VocabModelStartVocabTrieVector(builder, numElems): return builder.StartVector(1, numElems, 1) |
|
def VocabModelAddBeginnerLevel(builder, beginnerLevel): builder.PrependUOffsetTRelativeSlot(1, flatbuffers.number_types.UOffsetTFlags.py_type(beginnerLevel), 0) |
|
def VocabModelAddDoNotTriggerInUpperCase(builder, doNotTriggerInUpperCase): builder.PrependUOffsetTRelativeSlot(2, flatbuffers.number_types.UOffsetTFlags.py_type(doNotTriggerInUpperCase), 0) |
|
def VocabModelAddTriggeringLocales(builder, triggeringLocales): builder.PrependUOffsetTRelativeSlot(3, flatbuffers.number_types.UOffsetTFlags.py_type(triggeringLocales), 0) |
|
def VocabModelAddTargetClassificationScore(builder, targetClassificationScore): builder.PrependFloat32Slot(4, targetClassificationScore, 1.0) |
|
def VocabModelAddPriorityScore(builder, priorityScore): builder.PrependFloat32Slot(5, priorityScore, 0.0) |
|
def VocabModelEnd(builder): return builder.EndObject() |
|
|