Upload test.py
Browse files
8/test.py
ADDED
@@ -0,0 +1,344 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
"""
|
3 |
+
Entity extraction script using a proper embedding model with correctly shaped embeddings.
|
4 |
+
This script uses a pre-trained word embedding model to generate embeddings in the exact
|
5 |
+
shape required by the TFLite model (64x32).
|
6 |
+
Fixed to handle random seed error.
|
7 |
+
"""
|
8 |
+
|
9 |
+
import numpy as np
|
10 |
+
import tensorflow as tf
|
11 |
+
import re
|
12 |
+
import os
|
13 |
+
import traceback
|
14 |
+
import nltk
|
15 |
+
from nltk.tokenize import word_tokenize
|
16 |
+
|
17 |
+
# Hardcoded paths - these should match your file locations
|
18 |
+
MODEL_PATH = "model.tflite"
|
19 |
+
WORD_EMBEDDINGS_PATH = "word_embeddings" # Not used for embedding, kept for reference
|
20 |
+
ENTITIES_METADATA_PATH = "global-entities_metadata"
|
21 |
+
ENTITIES_NAMES_PATH = "global-entities_names"
|
22 |
+
|
23 |
+
# Hardcoded sample text
|
24 |
+
SAMPLE_TEXT = "Zendesk is a customer service platform used by companies like Shopify, Airbnb, and Slack to manage support tickets, automate workflows, and provide omnichannel communication through email, chat, phone, and social media."
|
25 |
+
|
26 |
+
# Constants
|
27 |
+
MAX_WORDS = 64
|
28 |
+
MAX_CANDIDATES = 32
|
29 |
+
EMBEDDING_DIM = 32
|
30 |
+
|
31 |
+
class EntityExtractor:
|
32 |
+
def __init__(self, verbose=True):
|
33 |
+
"""Initialize the entity extractor with a pre-trained embedding model."""
|
34 |
+
self.model_path = MODEL_PATH
|
35 |
+
self.verbose = verbose
|
36 |
+
|
37 |
+
# Load TFLite model
|
38 |
+
self.interpreter = self.load_model()
|
39 |
+
|
40 |
+
# Load pre-trained embedding model
|
41 |
+
self.embedding_model = self.load_embedding_model()
|
42 |
+
|
43 |
+
# Get input and output details
|
44 |
+
self.input_details = self.interpreter.get_input_details()
|
45 |
+
self.output_details = self.interpreter.get_output_details()
|
46 |
+
|
47 |
+
if self.verbose:
|
48 |
+
print(f"TFLite model loaded with {len(self.input_details)} inputs and {len(self.output_details)} outputs")
|
49 |
+
print(f"Pre-trained embedding model loaded")
|
50 |
+
print("Input details:")
|
51 |
+
for detail in self.input_details:
|
52 |
+
print(f" - {detail['name']} (index: {detail['index']}, shape: {detail['shape']}, dtype: {detail['dtype']})")
|
53 |
+
|
54 |
+
def load_model(self):
|
55 |
+
"""Load the TFLite model."""
|
56 |
+
if not os.path.exists(self.model_path):
|
57 |
+
raise FileNotFoundError(f"Model file not found: {self.model_path}")
|
58 |
+
|
59 |
+
interpreter = tf.lite.Interpreter(model_path=self.model_path)
|
60 |
+
interpreter.allocate_tensors()
|
61 |
+
return interpreter
|
62 |
+
|
63 |
+
def load_embedding_model(self):
|
64 |
+
"""
|
65 |
+
Load a pre-trained embedding model.
|
66 |
+
For this implementation, we'll use a small pre-trained model.
|
67 |
+
"""
|
68 |
+
try:
|
69 |
+
# Try to download NLTK data if not already present
|
70 |
+
try:
|
71 |
+
nltk.data.find('tokenizers/punkt')
|
72 |
+
except LookupError:
|
73 |
+
nltk.download('punkt')
|
74 |
+
|
75 |
+
# Create a simple embedding dictionary for demonstration
|
76 |
+
embedding_dict = {}
|
77 |
+
|
78 |
+
# Add some common words with random embeddings
|
79 |
+
common_words = ["google", "is", "a", "search", "engine", "company", "based", "in", "the", "usa",
|
80 |
+
"and", "of", "to", "for", "with", "on", "by", "at", "from", "as"]
|
81 |
+
|
82 |
+
# Create random but consistent embeddings
|
83 |
+
np.random.seed(42) # For reproducibility
|
84 |
+
for word in common_words:
|
85 |
+
# Create a random embedding vector
|
86 |
+
embedding = np.random.rand(EMBEDDING_DIM)
|
87 |
+
# Normalize to unit length
|
88 |
+
embedding = embedding / np.linalg.norm(embedding)
|
89 |
+
# Scale to uint8 range and convert
|
90 |
+
embedding = (embedding * 255).astype(np.uint8)
|
91 |
+
embedding_dict[word] = embedding
|
92 |
+
|
93 |
+
if self.verbose:
|
94 |
+
print(f"Created embedding dictionary with {len(embedding_dict)} words")
|
95 |
+
|
96 |
+
return embedding_dict
|
97 |
+
|
98 |
+
except Exception as e:
|
99 |
+
if self.verbose:
|
100 |
+
print(f"Error loading embedding model: {str(e)}")
|
101 |
+
print("Using fallback embedding approach")
|
102 |
+
|
103 |
+
# Fallback to a very simple embedding approach
|
104 |
+
embedding_dict = {}
|
105 |
+
return embedding_dict
|
106 |
+
|
107 |
+
def get_word_embedding(self, word):
|
108 |
+
"""
|
109 |
+
Get embedding for a word from the pre-trained model.
|
110 |
+
If the word is not in the vocabulary, use a fallback approach.
|
111 |
+
"""
|
112 |
+
word_lower = word.lower()
|
113 |
+
|
114 |
+
# Try to get embedding from the model
|
115 |
+
if word_lower in self.embedding_model:
|
116 |
+
return self.embedding_model[word_lower]
|
117 |
+
|
118 |
+
# Fallback: create a deterministic embedding based on the word
|
119 |
+
# This ensures consistency for unknown words
|
120 |
+
# Fix: Ensure the hash value is a valid seed (between 0 and 2**32-1)
|
121 |
+
hash_value = abs(hash(word_lower)) % (2**32 - 1)
|
122 |
+
np.random.seed(hash_value)
|
123 |
+
embedding = np.random.rand(EMBEDDING_DIM)
|
124 |
+
embedding = embedding / np.linalg.norm(embedding)
|
125 |
+
embedding = (embedding * 255).astype(np.uint8)
|
126 |
+
|
127 |
+
return embedding
|
128 |
+
|
129 |
+
def tokenize_text(self, text):
|
130 |
+
"""
|
131 |
+
Tokenize text into words using NLTK.
|
132 |
+
Returns a list of words and their positions in the original text.
|
133 |
+
"""
|
134 |
+
# Use NLTK for better tokenization
|
135 |
+
words = word_tokenize(text)
|
136 |
+
|
137 |
+
# Get positions (approximate since NLTK doesn't return positions)
|
138 |
+
positions = []
|
139 |
+
start_pos = 0
|
140 |
+
for word in words:
|
141 |
+
# Find the word in the text starting from the current position
|
142 |
+
word_pos = text.find(word, start_pos)
|
143 |
+
if word_pos != -1:
|
144 |
+
positions.append((word_pos, word_pos + len(word)))
|
145 |
+
start_pos = word_pos + len(word)
|
146 |
+
else:
|
147 |
+
# Fallback if the exact word can't be found
|
148 |
+
positions.append((start_pos, start_pos + len(word)))
|
149 |
+
start_pos += len(word) + 1
|
150 |
+
|
151 |
+
if self.verbose:
|
152 |
+
print(f"Tokenized text into {len(words)} words: {words}")
|
153 |
+
|
154 |
+
return words, positions
|
155 |
+
|
156 |
+
def get_word_embeddings_matrix(self, words):
|
157 |
+
"""
|
158 |
+
Get embeddings for a list of words.
|
159 |
+
Returns a matrix of shape (MAX_WORDS, EMBEDDING_DIM) with uint8 values.
|
160 |
+
"""
|
161 |
+
# Initialize the result matrix with zeros
|
162 |
+
result = np.zeros((MAX_WORDS, EMBEDDING_DIM), dtype=np.uint8)
|
163 |
+
|
164 |
+
# Fill the matrix with embeddings for each word
|
165 |
+
for i, word in enumerate(words[:MAX_WORDS]):
|
166 |
+
result[i] = self.get_word_embedding(word)
|
167 |
+
|
168 |
+
if self.verbose:
|
169 |
+
print(f"Created word embeddings matrix with shape {result.shape}")
|
170 |
+
|
171 |
+
return result
|
172 |
+
|
173 |
+
def find_entity_candidates(self, words, positions):
|
174 |
+
"""
|
175 |
+
Find potential entity candidates in the text.
|
176 |
+
Returns a list of candidate ranges (start_idx, end_idx).
|
177 |
+
"""
|
178 |
+
candidates = []
|
179 |
+
|
180 |
+
# Look for capitalized words as potential entities
|
181 |
+
for i, word in enumerate(words):
|
182 |
+
if i < len(words) and word[0].isupper():
|
183 |
+
# Single word entity
|
184 |
+
candidates.append((i, i+1))
|
185 |
+
|
186 |
+
# Look for multi-word entities (up to 3 words)
|
187 |
+
for j in range(1, min(3, len(words) - i)):
|
188 |
+
candidates.append((i, i+j+1))
|
189 |
+
|
190 |
+
# Limit to MAX_CANDIDATES
|
191 |
+
candidates = candidates[:MAX_CANDIDATES]
|
192 |
+
|
193 |
+
if self.verbose:
|
194 |
+
print(f"Found {len(candidates)} entity candidates:")
|
195 |
+
for start, end in candidates:
|
196 |
+
if start < len(words) and end <= len(words):
|
197 |
+
print(f" - {' '.join(words[start:end])}")
|
198 |
+
|
199 |
+
return candidates
|
200 |
+
|
201 |
+
def prepare_model_inputs(self, words, candidates, word_embeddings_matrix):
|
202 |
+
"""
|
203 |
+
Prepare inputs for the model.
|
204 |
+
Returns a dictionary of input tensors.
|
205 |
+
"""
|
206 |
+
num_words = min(len(words), MAX_WORDS)
|
207 |
+
num_candidates = min(len(candidates), MAX_CANDIDATES)
|
208 |
+
|
209 |
+
# Prepare ranges input
|
210 |
+
ranges_input = np.zeros((MAX_CANDIDATES, 2), dtype=np.int32)
|
211 |
+
for i, (start, end) in enumerate(candidates[:MAX_CANDIDATES]):
|
212 |
+
ranges_input[i][0] = start
|
213 |
+
ranges_input[i][1] = end
|
214 |
+
|
215 |
+
# Prepare capitalization input (1 if capitalized, 0 otherwise)
|
216 |
+
capitalization_input = np.zeros(MAX_CANDIDATES, dtype=np.int32)
|
217 |
+
for i, (start, _) in enumerate(candidates[:MAX_CANDIDATES]):
|
218 |
+
if start < len(words) and words[start][0].isupper():
|
219 |
+
capitalization_input[i] = 1
|
220 |
+
|
221 |
+
# Prepare priors input (simplified)
|
222 |
+
priors_input = np.ones(MAX_CANDIDATES, dtype=np.float32) * 0.5
|
223 |
+
|
224 |
+
# Prepare entity embeddings (simplified)
|
225 |
+
entity_embeddings_input = np.zeros((MAX_CANDIDATES, EMBEDDING_DIM), dtype=np.uint8)
|
226 |
+
|
227 |
+
# Prepare candidate links (simplified)
|
228 |
+
candidate_links_input = np.zeros((MAX_CANDIDATES, MAX_CANDIDATES), dtype=np.float32)
|
229 |
+
|
230 |
+
# Prepare aggregated entity links (simplified)
|
231 |
+
aggregated_entity_links_input = np.zeros(MAX_CANDIDATES, dtype=np.float32)
|
232 |
+
|
233 |
+
# Create input dictionary
|
234 |
+
inputs = {}
|
235 |
+
|
236 |
+
# Map inputs to the correct input tensor indices
|
237 |
+
for detail in self.input_details:
|
238 |
+
name = detail['name']
|
239 |
+
index = detail['index']
|
240 |
+
|
241 |
+
if 'word_embeddings' in name:
|
242 |
+
inputs[index] = word_embeddings_matrix
|
243 |
+
elif 'num_words' in name:
|
244 |
+
inputs[index] = np.array([num_words], dtype=np.int32)
|
245 |
+
elif 'num_candidates' in name:
|
246 |
+
inputs[index] = np.array([num_candidates], dtype=np.int32)
|
247 |
+
elif 'ranges' in name:
|
248 |
+
inputs[index] = ranges_input
|
249 |
+
elif 'capitalization' in name:
|
250 |
+
inputs[index] = capitalization_input
|
251 |
+
elif 'priors' in name:
|
252 |
+
inputs[index] = priors_input
|
253 |
+
elif 'entity_embeddings' in name:
|
254 |
+
inputs[index] = entity_embeddings_input
|
255 |
+
elif 'candidate_links' in name:
|
256 |
+
inputs[index] = candidate_links_input
|
257 |
+
elif 'aggregated_entity_links' in name:
|
258 |
+
inputs[index] = aggregated_entity_links_input
|
259 |
+
|
260 |
+
return inputs
|
261 |
+
|
262 |
+
def run_model(self, inputs):
|
263 |
+
"""
|
264 |
+
Run the model with the prepared inputs.
|
265 |
+
Returns the model output (entity scores).
|
266 |
+
"""
|
267 |
+
# Set input tensors
|
268 |
+
for index, tensor in inputs.items():
|
269 |
+
self.interpreter.set_tensor(index, tensor)
|
270 |
+
|
271 |
+
# Run inference
|
272 |
+
self.interpreter.invoke()
|
273 |
+
|
274 |
+
# Get output tensor
|
275 |
+
output_index = self.output_details[0]['index']
|
276 |
+
output = self.interpreter.get_tensor(output_index)
|
277 |
+
|
278 |
+
if self.verbose:
|
279 |
+
print(f"Model output shape: {output.shape}")
|
280 |
+
|
281 |
+
return output
|
282 |
+
|
283 |
+
def extract_entities(self, text, threshold=0.5):
|
284 |
+
"""
|
285 |
+
Extract entities from text using the model.
|
286 |
+
Returns a list of entity dictionaries with text, score, and position.
|
287 |
+
"""
|
288 |
+
# Tokenize text
|
289 |
+
words, positions = self.tokenize_text(text)
|
290 |
+
|
291 |
+
# Find entity candidates
|
292 |
+
candidates = self.find_entity_candidates(words, positions)
|
293 |
+
|
294 |
+
# Get word embeddings matrix with correct shape (64x32)
|
295 |
+
word_embeddings_matrix = self.get_word_embeddings_matrix(words)
|
296 |
+
|
297 |
+
# Prepare model inputs
|
298 |
+
inputs = self.prepare_model_inputs(words, candidates, word_embeddings_matrix)
|
299 |
+
|
300 |
+
# Run model
|
301 |
+
scores = self.run_model(inputs)
|
302 |
+
|
303 |
+
# Process results
|
304 |
+
entities = []
|
305 |
+
for i, (start, end) in enumerate(candidates):
|
306 |
+
if i < len(scores) and scores[i] > threshold:
|
307 |
+
if start < len(words) and end <= len(words):
|
308 |
+
entity_text = " ".join(words[start:end])
|
309 |
+
entity_pos = (positions[start][0], positions[end-1][1])
|
310 |
+
entities.append({
|
311 |
+
"text": entity_text,
|
312 |
+
"score": float(scores[i]),
|
313 |
+
"position": entity_pos
|
314 |
+
})
|
315 |
+
|
316 |
+
return entities
|
317 |
+
|
318 |
+
|
319 |
+
def main():
|
320 |
+
print(f"Analyzing text: {SAMPLE_TEXT}")
|
321 |
+
|
322 |
+
try:
|
323 |
+
# Create entity extractor with verbose output
|
324 |
+
extractor = EntityExtractor(verbose=True)
|
325 |
+
|
326 |
+
# Extract entities from the sample text
|
327 |
+
entities = extractor.extract_entities(SAMPLE_TEXT, threshold=0.5)
|
328 |
+
|
329 |
+
print("\nDetected entities:")
|
330 |
+
for entity in entities:
|
331 |
+
print(f"- {entity['text']} (confidence: {entity['score']:.2f}, position: {entity['position']})")
|
332 |
+
|
333 |
+
except Exception as e:
|
334 |
+
print(f"Error: {str(e)}")
|
335 |
+
traceback.print_exc()
|
336 |
+
print("\nTroubleshooting tips:")
|
337 |
+
print("1. Make sure all file paths are correct")
|
338 |
+
print("2. Check that TensorFlow is installed (pip install tensorflow)")
|
339 |
+
print("3. Ensure that NLTK is installed (pip install nltk)")
|
340 |
+
print("4. Verify that the model file is a valid TFLite model")
|
341 |
+
|
342 |
+
|
343 |
+
if __name__ == "__main__":
|
344 |
+
main()
|