File size: 7,212 Bytes
f196edb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 |
import pandas as pd
import torch
from torch.utils.data import Dataset, DataLoader
from transformers import AlbertTokenizer, AlbertForSequenceClassification, AdamW, get_linear_schedule_with_warmup
from sklearn.model_selection import train_test_split
import numpy as np
import os
from tqdm.auto import tqdm
import streamlit as st
import matplotlib.pyplot as plt
# Constants
EPOCHS = 10
VAL_SPLIT = 0.1
VAL_EVERY_STEPS = 1000
BATCH_SIZE = 38
LEARNING_RATE = 5e-5
LOG_EVERY_STEP = True
SAVE_CHECKPOINTS = True
MAX_SEQ_LENGTH = 512
EARLY_STOPPING_PATIENCE = 3
MODEL_NAME = 'albert/albert-base-v2'
LEVEL = 1
OUTPUT_DIR = f'level{LEVEL}'
# Ensure output directory exists
os.makedirs(OUTPUT_DIR, exist_ok=True)
# Load data
df = pd.read_csv(f'level_{LEVEL}.csv')
df.rename(columns={'response': 'text'}, inplace=True)
# Get unique labels and create mapping
labels = sorted(df[str(LEVEL)].unique())
label_to_index = {label: i for i, label in enumerate(labels)}
index_to_label = {i: label for label, i in label_to_index.items()}
num_labels = len(labels)
# Save label mapping
np.save(os.path.join(OUTPUT_DIR, 'label_map.npy'), label_to_index)
# Prepare data for training
df['label'] = df[str(LEVEL)].map(label_to_index)
train_df, val_df = train_test_split(df, test_size=VAL_SPLIT, random_state=42)
# Tokenizer
tokenizer = AlbertTokenizer.from_pretrained(MODEL_NAME)
class TaxonomyDataset(Dataset):
def __init__(self, dataframe, tokenizer, max_len):
self.data = dataframe
self.tokenizer = tokenizer
self.max_len = max_len
def __len__(self):
return len(self.data)
def __getitem__(self, index):
text = str(self.data.iloc[index].text)
label = int(self.data.iloc[index].label)
encoding = self.tokenizer.encode_plus(
text,
add_special_tokens=True,
max_length=self.max_len,
padding='max_length',
truncation=True,
return_attention_mask=True,
return_tensors='pt'
)
return {
'input_ids': encoding['input_ids'].flatten(),
'attention_mask': encoding['attention_mask'].flatten(),
'labels': torch.tensor(label, dtype=torch.long)
}
# Create datasets and dataloaders
train_dataset = TaxonomyDataset(train_df, tokenizer, MAX_SEQ_LENGTH)
val_dataset = TaxonomyDataset(val_df, tokenizer, MAX_SEQ_LENGTH)
train_dataloader = DataLoader(train_dataset, batch_size=BATCH_SIZE, shuffle=True)
val_dataloader = DataLoader(val_dataset, batch_size=BATCH_SIZE)
# Model
model = AlbertForSequenceClassification.from_pretrained(MODEL_NAME, num_labels=num_labels)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
# Optimizer and scheduler
optimizer = AdamW(model.parameters(), lr=LEARNING_RATE)
total_steps = len(train_dataloader) * EPOCHS
scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=0, num_training_steps=total_steps)
# Loss tracking
train_losses = []
val_losses = []
val_steps = []
best_val_loss = float('inf')
early_stopping_counter = 0
global_step = 0
# Streamlit setup
st.title(f'Level {LEVEL} Model Training')
progress_bar = st.progress(0)
status_text = st.empty()
train_loss_fig, train_loss_ax = plt.subplots()
val_loss_fig, val_loss_ax = plt.subplots()
train_loss_chart = st.pyplot(train_loss_fig)
val_loss_chart = st.pyplot(val_loss_fig)
def update_loss_charts():
train_loss_ax.clear()
train_loss_ax.plot(range(len(train_losses)), train_losses)
train_loss_ax.set_xlabel("Steps")
train_loss_ax.set_ylabel("Loss")
train_loss_ax.set_title("Training Loss")
train_loss_chart.pyplot(train_loss_fig)
val_loss_ax.clear()
val_loss_ax.plot(val_steps, val_losses)
val_loss_ax.set_xlabel("Steps")
val_loss_ax.set_ylabel("Loss")
val_loss_ax.set_title("Validation Loss")
val_loss_chart.pyplot(val_loss_fig)
# Training loop
for epoch in range(EPOCHS):
model.train()
total_train_loss = 0
for batch in tqdm(train_dataloader, desc=f'Epoch {epoch+1}/{EPOCHS}', leave=False):
optimizer.zero_grad()
input_ids = batch['input_ids'].to(device)
attention_mask = batch['attention_mask'].to(device)
labels = batch['labels'].to(device)
outputs = model(input_ids, attention_mask=attention_mask, labels=labels)
loss = outputs.loss
total_train_loss += loss.item()
loss.backward()
optimizer.step()
scheduler.step()
global_step += 1
train_losses.append(loss.item())
if LOG_EVERY_STEP:
status_text.text(f"Epoch {epoch+1}/{EPOCHS}, Step {global_step}, Training Loss: {loss.item():.4f}")
update_loss_charts()
if global_step % VAL_EVERY_STEPS == 0:
model.eval()
total_val_loss = 0
with torch.no_grad():
for val_batch in val_dataloader:
input_ids = val_batch['input_ids'].to(device)
attention_mask = val_batch['attention_mask'].to(device)
labels = val_batch['labels'].to(device)
outputs = model(input_ids, attention_mask=attention_mask, labels=labels)
total_val_loss += outputs.loss.item()
avg_val_loss = total_val_loss / len(val_dataloader)
val_losses.append(avg_val_loss)
val_steps.append(global_step)
status_text.text(f"Epoch {epoch+1}/{EPOCHS}, Step {global_step}, Training Loss: {loss.item():.4f}, Validation Loss: {avg_val_loss:.4f}")
update_loss_charts()
if SAVE_CHECKPOINTS:
checkpoint_dir = os.path.join(OUTPUT_DIR, f'level{LEVEL}_step{global_step}')
os.makedirs(checkpoint_dir, exist_ok=True)
model.save_pretrained(checkpoint_dir)
tokenizer.save_pretrained(checkpoint_dir)
status_text.text(f"Checkpoint saved at step {global_step}")
if avg_val_loss < best_val_loss:
best_val_loss = avg_val_loss
early_stopping_counter = 0
else:
early_stopping_counter += 1
if early_stopping_counter >= EARLY_STOPPING_PATIENCE:
status_text.text(f"Early stopping triggered at step {global_step}")
progress_bar.progress(100)
# Save final model before stopping
model.save_pretrained(os.path.join(OUTPUT_DIR, 'model'))
tokenizer.save_pretrained(os.path.join(OUTPUT_DIR, 'model'))
exit() # Stop training
progress_bar.progress(int((global_step / total_steps) * 100))
avg_train_loss = total_train_loss / len(train_dataloader)
print(f'Epoch {epoch+1}/{EPOCHS} Average Training Loss: {avg_train_loss:.4f}')
# Save final model
model.save_pretrained(os.path.join(OUTPUT_DIR, 'model'))
tokenizer.save_pretrained(os.path.join(OUTPUT_DIR, 'model'))
status_text.success("Training complete!") |