File size: 7,212 Bytes
f196edb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
import pandas as pd
import torch
from torch.utils.data import Dataset, DataLoader
from transformers import AlbertTokenizer, AlbertForSequenceClassification, AdamW, get_linear_schedule_with_warmup
from sklearn.model_selection import train_test_split
import numpy as np
import os
from tqdm.auto import tqdm
import streamlit as st
import matplotlib.pyplot as plt

# Constants
EPOCHS = 10
VAL_SPLIT = 0.1
VAL_EVERY_STEPS = 1000
BATCH_SIZE = 38
LEARNING_RATE = 5e-5
LOG_EVERY_STEP = True
SAVE_CHECKPOINTS = True
MAX_SEQ_LENGTH = 512
EARLY_STOPPING_PATIENCE = 3
MODEL_NAME = 'albert/albert-base-v2'
LEVEL = 1
OUTPUT_DIR = f'level{LEVEL}'

# Ensure output directory exists
os.makedirs(OUTPUT_DIR, exist_ok=True)

# Load data
df = pd.read_csv(f'level_{LEVEL}.csv')
df.rename(columns={'response': 'text'}, inplace=True)

# Get unique labels and create mapping
labels = sorted(df[str(LEVEL)].unique())
label_to_index = {label: i for i, label in enumerate(labels)}
index_to_label = {i: label for label, i in label_to_index.items()}
num_labels = len(labels)

# Save label mapping
np.save(os.path.join(OUTPUT_DIR, 'label_map.npy'), label_to_index)

# Prepare data for training
df['label'] = df[str(LEVEL)].map(label_to_index)
train_df, val_df = train_test_split(df, test_size=VAL_SPLIT, random_state=42)

# Tokenizer
tokenizer = AlbertTokenizer.from_pretrained(MODEL_NAME)

class TaxonomyDataset(Dataset):
    def __init__(self, dataframe, tokenizer, max_len):
        self.data = dataframe
        self.tokenizer = tokenizer
        self.max_len = max_len

    def __len__(self):
        return len(self.data)

    def __getitem__(self, index):
        text = str(self.data.iloc[index].text)
        label = int(self.data.iloc[index].label)
        encoding = self.tokenizer.encode_plus(
            text,
            add_special_tokens=True,
            max_length=self.max_len,
            padding='max_length',
            truncation=True,
            return_attention_mask=True,
            return_tensors='pt'
        )
        return {
            'input_ids': encoding['input_ids'].flatten(),
            'attention_mask': encoding['attention_mask'].flatten(),
            'labels': torch.tensor(label, dtype=torch.long)
        }

# Create datasets and dataloaders
train_dataset = TaxonomyDataset(train_df, tokenizer, MAX_SEQ_LENGTH)
val_dataset = TaxonomyDataset(val_df, tokenizer, MAX_SEQ_LENGTH)

train_dataloader = DataLoader(train_dataset, batch_size=BATCH_SIZE, shuffle=True)
val_dataloader = DataLoader(val_dataset, batch_size=BATCH_SIZE)

# Model
model = AlbertForSequenceClassification.from_pretrained(MODEL_NAME, num_labels=num_labels)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)

# Optimizer and scheduler
optimizer = AdamW(model.parameters(), lr=LEARNING_RATE)
total_steps = len(train_dataloader) * EPOCHS
scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=0, num_training_steps=total_steps)

# Loss tracking
train_losses = []
val_losses = []
val_steps = []
best_val_loss = float('inf')
early_stopping_counter = 0
global_step = 0

# Streamlit setup
st.title(f'Level {LEVEL} Model Training')
progress_bar = st.progress(0)
status_text = st.empty()
train_loss_fig, train_loss_ax = plt.subplots()
val_loss_fig, val_loss_ax = plt.subplots()
train_loss_chart = st.pyplot(train_loss_fig)
val_loss_chart = st.pyplot(val_loss_fig)

def update_loss_charts():
    train_loss_ax.clear()
    train_loss_ax.plot(range(len(train_losses)), train_losses)
    train_loss_ax.set_xlabel("Steps")
    train_loss_ax.set_ylabel("Loss")
    train_loss_ax.set_title("Training Loss")
    train_loss_chart.pyplot(train_loss_fig)

    val_loss_ax.clear()
    val_loss_ax.plot(val_steps, val_losses)
    val_loss_ax.set_xlabel("Steps")
    val_loss_ax.set_ylabel("Loss")
    val_loss_ax.set_title("Validation Loss")
    val_loss_chart.pyplot(val_loss_fig)

# Training loop
for epoch in range(EPOCHS):
    model.train()
    total_train_loss = 0
    for batch in tqdm(train_dataloader, desc=f'Epoch {epoch+1}/{EPOCHS}', leave=False):
        optimizer.zero_grad()
        input_ids = batch['input_ids'].to(device)
        attention_mask = batch['attention_mask'].to(device)
        labels = batch['labels'].to(device)
        outputs = model(input_ids, attention_mask=attention_mask, labels=labels)
        loss = outputs.loss
        total_train_loss += loss.item()
        loss.backward()
        optimizer.step()
        scheduler.step()
        global_step += 1

        train_losses.append(loss.item())

        if LOG_EVERY_STEP:
            status_text.text(f"Epoch {epoch+1}/{EPOCHS}, Step {global_step}, Training Loss: {loss.item():.4f}")
            update_loss_charts()

        if global_step % VAL_EVERY_STEPS == 0:
            model.eval()
            total_val_loss = 0
            with torch.no_grad():
                for val_batch in val_dataloader:
                    input_ids = val_batch['input_ids'].to(device)
                    attention_mask = val_batch['attention_mask'].to(device)
                    labels = val_batch['labels'].to(device)
                    outputs = model(input_ids, attention_mask=attention_mask, labels=labels)
                    total_val_loss += outputs.loss.item()

            avg_val_loss = total_val_loss / len(val_dataloader)
            val_losses.append(avg_val_loss)
            val_steps.append(global_step)
            status_text.text(f"Epoch {epoch+1}/{EPOCHS}, Step {global_step}, Training Loss: {loss.item():.4f}, Validation Loss: {avg_val_loss:.4f}")
            update_loss_charts()

            if SAVE_CHECKPOINTS:
                checkpoint_dir = os.path.join(OUTPUT_DIR, f'level{LEVEL}_step{global_step}')
                os.makedirs(checkpoint_dir, exist_ok=True)
                model.save_pretrained(checkpoint_dir)
                tokenizer.save_pretrained(checkpoint_dir)
                status_text.text(f"Checkpoint saved at step {global_step}")

            if avg_val_loss < best_val_loss:
                best_val_loss = avg_val_loss
                early_stopping_counter = 0
            else:
                early_stopping_counter += 1
                if early_stopping_counter >= EARLY_STOPPING_PATIENCE:
                    status_text.text(f"Early stopping triggered at step {global_step}")
                    progress_bar.progress(100)
                    # Save final model before stopping
                    model.save_pretrained(os.path.join(OUTPUT_DIR, 'model'))
                    tokenizer.save_pretrained(os.path.join(OUTPUT_DIR, 'model'))
                    exit() # Stop training
        progress_bar.progress(int((global_step / total_steps) * 100))

    avg_train_loss = total_train_loss / len(train_dataloader)
    print(f'Epoch {epoch+1}/{EPOCHS} Average Training Loss: {avg_train_loss:.4f}')

# Save final model
model.save_pretrained(os.path.join(OUTPUT_DIR, 'model'))
tokenizer.save_pretrained(os.path.join(OUTPUT_DIR, 'model'))
status_text.success("Training complete!")