Update handler.py
Browse files- handler.py +7 -15
handler.py
CHANGED
@@ -12,30 +12,22 @@ class EndpointHandler:
|
|
12 |
"additional_special_tokens": ["[QUERY]", "[LABEL_NAME]", "[LABEL_DESCRIPTION]"]
|
13 |
})
|
14 |
self.model = AutoModel.from_pretrained(path).to(self.device)
|
15 |
-
|
16 |
head_path = os.path.join(path, "classifier_head.json")
|
17 |
with open(head_path, "r") as f:
|
18 |
head = json.load(f)
|
19 |
-
|
20 |
self.classifier = torch.nn.Linear(self.model.config.hidden_size, 1).to(self.device)
|
21 |
self.classifier.weight.data = torch.tensor(head["scorer_weight"]).to(self.device)
|
22 |
self.classifier.bias.data = torch.tensor(head["scorer_bias"]).to(self.device)
|
23 |
-
|
24 |
self.model.eval()
|
25 |
|
26 |
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
|
27 |
-
""
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
"candidates": [
|
32 |
-
{"label": "Tool-Specific", "description": "..."},
|
33 |
-
{"label": "Local Intent", "description": "..."}
|
34 |
-
]
|
35 |
-
}
|
36 |
-
"""
|
37 |
-
query = data["query"]
|
38 |
-
candidates = data["candidates"]
|
39 |
results = []
|
40 |
|
41 |
with torch.no_grad():
|
|
|
12 |
"additional_special_tokens": ["[QUERY]", "[LABEL_NAME]", "[LABEL_DESCRIPTION]"]
|
13 |
})
|
14 |
self.model = AutoModel.from_pretrained(path).to(self.device)
|
15 |
+
|
16 |
head_path = os.path.join(path, "classifier_head.json")
|
17 |
with open(head_path, "r") as f:
|
18 |
head = json.load(f)
|
19 |
+
|
20 |
self.classifier = torch.nn.Linear(self.model.config.hidden_size, 1).to(self.device)
|
21 |
self.classifier.weight.data = torch.tensor(head["scorer_weight"]).to(self.device)
|
22 |
self.classifier.bias.data = torch.tensor(head["scorer_bias"]).to(self.device)
|
23 |
+
|
24 |
self.model.eval()
|
25 |
|
26 |
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
|
27 |
+
payload = data.get("inputs", data)
|
28 |
+
|
29 |
+
query = payload["query"]
|
30 |
+
candidates = payload["candidates"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
results = []
|
32 |
|
33 |
with torch.no_grad():
|