File size: 30,106 Bytes
41a21be 116050f 41a21be |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 |
---
base_model: nomic-ai/nomic-embed-text-v1
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
- dot_accuracy@1
- dot_accuracy@3
- dot_accuracy@5
- dot_accuracy@10
- dot_precision@1
- dot_precision@3
- dot_precision@5
- dot_precision@10
- dot_recall@1
- dot_recall@3
- dot_recall@5
- dot_recall@10
- dot_ndcg@10
- dot_mrr@10
- dot_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:2459
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: What types of applications may require confidentiality during their
launch?
sentences:
- "Taken together, the technical protections and practices laid out in the Blueprint\
\ for an AI Bill of Rights can help \nguard the American public against many of\
\ the potential and actual harms identified by researchers, technolo\ngists,\
\ advocates, journalists, policymakers, and communities in the United States and\
\ around the world. This \ntechnical companion is intended to be used as a reference\
\ by people across many circumstances – anyone"
- "deactivate AI systems that demonstrate performance or outcomes inconsistent with\
\ intended use. \nAction ID \nSuggested Action \nGAI Risks \nMG-2.4-001 \nEstablish\
\ and maintain communication plans to inform AI stakeholders as part of \nthe\
\ deactivation or disengagement process of a specific GAI system (including for\
\ \nopen-source models) or context of use, including reasons, workarounds, user\
\ \naccess removal, alternative processes, contact information, etc. \nHuman-AI\
\ Configuration"
- "launch may need to be confidential. Government applications, particularly law\
\ enforcement applications or \napplications that raise national security considerations,\
\ may require confidential or limited engagement based \non system sensitivities\
\ and preexisting oversight laws and structures. Concerns raised in this consultation\
\ \nshould be documented, and the automated system developers were proposing to\
\ create, use, or deploy should \nbe reconsidered based on this feedback."
- source_sentence: What is the main focus of the paper by Chandra et al. (2023) regarding
Chinese influence operations?
sentences:
- "https://arxiv.org/abs/2403.06634 \nChandra, B. et al. (2023) Dismantling the\
\ Disinformation Business of Chinese Influence Operations. \nRAND. https://www.rand.org/pubs/commentary/2023/10/dismantling-the-disinformation-business-of-\n\
chinese.html \nCiriello, R. et al. (2024) Ethical Tensions in Human-AI Companionship:\
\ A Dialectical Inquiry into Replika. \nResearchGate. https://www.researchgate.net/publication/374505266_Ethical_Tensions_in_Human-\n\
AI_Companionship_A_Dialectical_Inquiry_into_Replika"
- "monocultures,3” resulting from repeated use of the same model, or impacts on\
\ access to \nopportunity, labor markets, and the creative economies.4 \n• \n\
Source of risk: Risks may emerge from factors related to the design, training,\
\ or operation of the \nGAI model itself, stemming in some cases from GAI model\
\ or system inputs, and in other cases, \nfrom GAI system outputs. Many GAI risks,\
\ however, originate from human behavior, including"
- "limited to GAI model or system architecture, training mechanisms and libraries,\
\ data types used for \ntraining or fine-tuning, levels of model access or availability\
\ of model weights, and application or use \ncase context. \nOrganizations may\
\ choose to tailor how they measure GAI risks based on these characteristics.\
\ They may \nadditionally wish to allocate risk management resources relative\
\ to the severity and likelihood of"
- source_sentence: What steps are being taken to enhance transparency and accountability
in the GAI system?
sentences:
- "security, health, foreign relations, the environment, and the technological recovery\
\ and use of resources, among \nother topics. OSTP leads interagency science and\
\ technology policy coordination efforts, assists the Office of \nManagement and\
\ Budget (OMB) with an annual review and analysis of Federal research and development\
\ in \nbudgets, and serves as a source of scientific and technological analysis\
\ and judgment for the President with"
- "steps taken to update the GAI system to enhance transparency and \naccountability.\
\ \nHuman-AI Configuration; Harmful \nBias and Homogenization \nMG-4.1-006 \nTrack\
\ dataset modifications for provenance by monitoring data deletions, \nrectification\
\ requests, and other changes that may impact the verifiability of \ncontent origins.\
\ \nInformation Integrity"
- "content. Some well-known techniques for provenance data tracking include digital\
\ watermarking, \nmetadata recording, digital fingerprinting, and human authentication,\
\ among others. \nProvenance Data Tracking Approaches \nProvenance data tracking\
\ techniques for GAI systems can be used to track the history and origin of data\
\ \ninputs, metadata, and synthetic content. Provenance data tracking records\
\ the origin and history for"
- source_sentence: What are some examples of mechanisms for human consideration and
fallback mentioned in the context?
sentences:
- "consequences resulting from the utilization of content provenance approaches\
\ on users and \ncommunities. Furthermore, organizations can track and document\
\ the provenance of datasets to identify \ninstances in which AI-generated data\
\ is a potential root cause of performance issues with the GAI \nsystem. \nA.1.8.\
\ Incident Disclosure \nOverview \nAI incidents can be defined as an “event, circumstance,\
\ or series of events where the development, use,"
- "fully impact rights, opportunities, or access. Automated systems that have greater\
\ control over outcomes, \nprovide input to high-stakes decisions, relate to sensitive\
\ domains, or otherwise have a greater potential to \nmeaningfully impact rights,\
\ opportunities, or access should have greater availability (e.g., staffing) and\
\ over\nsight of human consideration and fallback mechanisms. \nAccessible. Mechanisms\
\ for human consideration and fallback, whether in-person, on paper, by phone,\
\ or"
- '•
Frida Polli, CEO, Pymetrics
•
Karen Levy, Assistant Professor, Department of Information Science, Cornell University
•
Natasha Duarte, Project Director, Upturn
•
Elana Zeide, Assistant Professor, University of Nebraska College of Law
•
Fabian Rogers, Constituent Advocate, Office of NY State Senator Jabari Brisport
and Community
Advocate and Floor Captain, Atlantic Plaza Towers Tenants Association'
- source_sentence: What mental health issues are associated with the increased use
of technologies in schools and workplaces?
sentences:
- "but this approach may still produce harmful recommendations in response to other\
\ less-explicit, novel \nprompts (also relevant to CBRN Information or Capabilities,\
\ Data Privacy, Information Security, and \nObscene, Degrading and/or Abusive\
\ Content). Crafting such prompts deliberately is known as \n“jailbreaking,” or,\
\ manipulating prompts to circumvent output controls. Limitations of GAI systems\
\ can be"
- "external use, narrow vs. broad application scope, fine-tuning, and varieties of\
\ \ndata sources (e.g., grounding, retrieval-augmented generation). \nData Privacy;\
\ Intellectual \nProperty"
- "technologies has increased in schools and workplaces, and, when coupled with\
\ consequential management and \nevaluation decisions, it is leading to mental\
\ health harms such as lowered self-confidence, anxiety, depression, and \na reduced\
\ ability to use analytical reasoning.61 Documented patterns show that personal\
\ data is being aggregated by \ndata brokers to profile communities in harmful\
\ ways.62 The impact of all this data harvesting is corrosive,"
model-index:
- name: SentenceTransformer based on nomic-ai/nomic-embed-text-v1
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: Unknown
type: unknown
metrics:
- type: cosine_accuracy@1
value: 0.8584142394822006
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.9838187702265372
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.9951456310679612
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9991909385113269
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.8584142394822006
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.32793959007551243
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.1990291262135922
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09991909385113268
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.8584142394822006
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.9838187702265372
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.9951456310679612
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9991909385113269
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.9417951214306157
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.9220443571171728
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.9221065926163013
name: Cosine Map@100
- type: dot_accuracy@1
value: 0.8584142394822006
name: Dot Accuracy@1
- type: dot_accuracy@3
value: 0.9838187702265372
name: Dot Accuracy@3
- type: dot_accuracy@5
value: 0.9951456310679612
name: Dot Accuracy@5
- type: dot_accuracy@10
value: 0.9991909385113269
name: Dot Accuracy@10
- type: dot_precision@1
value: 0.8584142394822006
name: Dot Precision@1
- type: dot_precision@3
value: 0.32793959007551243
name: Dot Precision@3
- type: dot_precision@5
value: 0.1990291262135922
name: Dot Precision@5
- type: dot_precision@10
value: 0.09991909385113268
name: Dot Precision@10
- type: dot_recall@1
value: 0.8584142394822006
name: Dot Recall@1
- type: dot_recall@3
value: 0.9838187702265372
name: Dot Recall@3
- type: dot_recall@5
value: 0.9951456310679612
name: Dot Recall@5
- type: dot_recall@10
value: 0.9991909385113269
name: Dot Recall@10
- type: dot_ndcg@10
value: 0.9417951214306157
name: Dot Ndcg@10
- type: dot_mrr@10
value: 0.9220443571171728
name: Dot Mrr@10
- type: dot_map@100
value: 0.9221065926163013
name: Dot Map@100
---
# SentenceTransformer based on nomic-ai/nomic-embed-text-v1
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [nomic-ai/nomic-embed-text-v1](https://huggingface.co/nomic-ai/nomic-embed-text-v1). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. In particular, **this model is trained on various documents which descibe frameworks for building ethical AI systems.** As such it performs well on matching questions to context in RAG applications.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [nomic-ai/nomic-embed-text-v1](https://huggingface.co/nomic-ai/nomic-embed-text-v1) <!-- at revision cc62377b015c53a3bf52bb2f4eb8c55326d3f162 -->
- **Maximum Sequence Length:** 8192 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: NomicBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("deman539/nomic-embed-text-v1")
# Run inference
sentences = [
'What mental health issues are associated with the increased use of technologies in schools and workplaces?',
'technologies has increased in schools and workplaces, and, when coupled with consequential management and \nevaluation decisions, it is leading to mental health harms such as lowered self-confidence, anxiety, depression, and \na reduced ability to use analytical reasoning.61 Documented patterns show that personal data is being aggregated by \ndata brokers to profile communities in harmful ways.62 The impact of all this data harvesting is corrosive,',
'but this approach may still produce harmful recommendations in response to other less-explicit, novel \nprompts (also relevant to CBRN Information or Capabilities, Data Privacy, Information Security, and \nObscene, Degrading and/or Abusive Content). Crafting such prompts deliberately is known as \n“jailbreaking,” or, manipulating prompts to circumvent output controls. Limitations of GAI systems can be',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Information Retrieval
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | Value |
|:--------------------|:-----------|
| cosine_accuracy@1 | 0.8584 |
| cosine_accuracy@3 | 0.9838 |
| cosine_accuracy@5 | 0.9951 |
| cosine_accuracy@10 | 0.9992 |
| cosine_precision@1 | 0.8584 |
| cosine_precision@3 | 0.3279 |
| cosine_precision@5 | 0.199 |
| cosine_precision@10 | 0.0999 |
| cosine_recall@1 | 0.8584 |
| cosine_recall@3 | 0.9838 |
| cosine_recall@5 | 0.9951 |
| cosine_recall@10 | 0.9992 |
| cosine_ndcg@10 | 0.9418 |
| cosine_mrr@10 | 0.922 |
| **cosine_map@100** | **0.9221** |
| dot_accuracy@1 | 0.8584 |
| dot_accuracy@3 | 0.9838 |
| dot_accuracy@5 | 0.9951 |
| dot_accuracy@10 | 0.9992 |
| dot_precision@1 | 0.8584 |
| dot_precision@3 | 0.3279 |
| dot_precision@5 | 0.199 |
| dot_precision@10 | 0.0999 |
| dot_recall@1 | 0.8584 |
| dot_recall@3 | 0.9838 |
| dot_recall@5 | 0.9951 |
| dot_recall@10 | 0.9992 |
| dot_ndcg@10 | 0.9418 |
| dot_mrr@10 | 0.922 |
| dot_map@100 | 0.9221 |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 2,459 training samples
* Columns: <code>sentence_0</code> and <code>sentence_1</code>
* Approximate statistics based on the first 1000 samples:
| | sentence_0 | sentence_1 |
|:--------|:---------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 2 tokens</li><li>mean: 18.7 tokens</li><li>max: 35 tokens</li></ul> | <ul><li>min: 22 tokens</li><li>mean: 93.19 tokens</li><li>max: 337 tokens</li></ul> |
* Samples:
| sentence_0 | sentence_1 |
|:-----------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>What should organizations include in contracts to evaluate third-party GAI processes and standards?</code> | <code>services acquisition and value chain risk management; and legal compliance. <br>Data Privacy; Information <br>Integrity; Information Security; <br>Intellectual Property; Value Chain <br>and Component Integration <br>GV-6.1-006 Include clauses in contracts which allow an organization to evaluate third-party <br>GAI processes and standards. <br>Information Integrity <br>GV-6.1-007 Inventory all third-party entities with access to organizational content and <br>establish approved GAI technology and service provider lists.</code> |
| <code>What steps should be taken to manage third-party entities with access to organizational content?</code> | <code>services acquisition and value chain risk management; and legal compliance. <br>Data Privacy; Information <br>Integrity; Information Security; <br>Intellectual Property; Value Chain <br>and Component Integration <br>GV-6.1-006 Include clauses in contracts which allow an organization to evaluate third-party <br>GAI processes and standards. <br>Information Integrity <br>GV-6.1-007 Inventory all third-party entities with access to organizational content and <br>establish approved GAI technology and service provider lists.</code> |
| <code>What should entities responsible for automated systems establish before deploying the system?</code> | <code>Clear organizational oversight. Entities responsible for the development or use of automated systems <br>should lay out clear governance structures and procedures. This includes clearly-stated governance proce<br>dures before deploying the system, as well as responsibility of specific individuals or entities to oversee ongoing <br>assessment and mitigation. Organizational stakeholders including those with oversight of the business process</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
```json
{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 32
- `num_train_epochs`: 20
- `multi_dataset_batch_sampler`: round_robin
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 32
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1
- `num_train_epochs`: 20
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.0
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `eval_use_gather_object`: False
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: round_robin
</details>
### Training Logs
| Epoch | Step | Training Loss | cosine_map@100 |
|:-------:|:----:|:-------------:|:--------------:|
| 0.6494 | 50 | - | 0.8493 |
| 1.0 | 77 | - | 0.8737 |
| 1.2987 | 100 | - | 0.8677 |
| 1.9481 | 150 | - | 0.8859 |
| 2.0 | 154 | - | 0.8886 |
| 2.5974 | 200 | - | 0.8913 |
| 3.0 | 231 | - | 0.9058 |
| 3.2468 | 250 | - | 0.8993 |
| 3.8961 | 300 | - | 0.9077 |
| 4.0 | 308 | - | 0.9097 |
| 4.5455 | 350 | - | 0.9086 |
| 5.0 | 385 | - | 0.9165 |
| 5.1948 | 400 | - | 0.9141 |
| 5.8442 | 450 | - | 0.9132 |
| 6.0 | 462 | - | 0.9138 |
| 6.4935 | 500 | 0.3094 | 0.9137 |
| 7.0 | 539 | - | 0.9166 |
| 7.1429 | 550 | - | 0.9172 |
| 7.7922 | 600 | - | 0.9160 |
| 8.0 | 616 | - | 0.9169 |
| 8.4416 | 650 | - | 0.9177 |
| 9.0 | 693 | - | 0.9169 |
| 9.0909 | 700 | - | 0.9177 |
| 9.7403 | 750 | - | 0.9178 |
| 10.0 | 770 | - | 0.9178 |
| 10.3896 | 800 | - | 0.9189 |
| 11.0 | 847 | - | 0.9180 |
| 11.0390 | 850 | - | 0.9180 |
| 11.6883 | 900 | - | 0.9188 |
| 12.0 | 924 | - | 0.9192 |
| 12.3377 | 950 | - | 0.9204 |
| 12.9870 | 1000 | 0.0571 | 0.9202 |
| 13.0 | 1001 | - | 0.9201 |
| 13.6364 | 1050 | - | 0.9212 |
| 14.0 | 1078 | - | 0.9203 |
| 14.2857 | 1100 | - | 0.9219 |
| 14.9351 | 1150 | - | 0.9207 |
| 15.0 | 1155 | - | 0.9207 |
| 15.5844 | 1200 | - | 0.9210 |
| 16.0 | 1232 | - | 0.9208 |
| 16.2338 | 1250 | - | 0.9216 |
| 16.8831 | 1300 | - | 0.9209 |
| 17.0 | 1309 | - | 0.9209 |
| 17.5325 | 1350 | - | 0.9216 |
| 18.0 | 1386 | - | 0.9213 |
| 18.1818 | 1400 | - | 0.9221 |
| 18.8312 | 1450 | - | 0.9217 |
| 19.0 | 1463 | - | 0.9217 |
| 19.4805 | 1500 | 0.0574 | 0.9225 |
| 20.0 | 1540 | - | 0.9221 |
### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.1.1
- Transformers: 4.44.2
- PyTorch: 2.4.1+cu121
- Accelerate: 0.34.2
- Datasets: 3.0.0
- Tokenizers: 0.19.1
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
```
#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |