File size: 30,106 Bytes
41a21be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
116050f
41a21be
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
---
base_model: nomic-ai/nomic-embed-text-v1
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
- dot_accuracy@1
- dot_accuracy@3
- dot_accuracy@5
- dot_accuracy@10
- dot_precision@1
- dot_precision@3
- dot_precision@5
- dot_precision@10
- dot_recall@1
- dot_recall@3
- dot_recall@5
- dot_recall@10
- dot_ndcg@10
- dot_mrr@10
- dot_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:2459
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: What types of applications may require confidentiality during their
    launch?
  sentences:
  - "Taken together, the technical protections and practices laid out in the Blueprint\
    \ for an AI Bill of Rights can help \nguard the American public against many of\
    \ the potential and actual harms identified by researchers, technolo­\ngists,\
    \ advocates, journalists, policymakers, and communities in the United States and\
    \ around the world. This \ntechnical companion is intended to be used as a reference\
    \ by people across many circumstances – anyone"
  - "deactivate AI systems that demonstrate performance or outcomes inconsistent with\
    \ intended use. \nAction ID \nSuggested Action \nGAI Risks \nMG-2.4-001 \nEstablish\
    \ and maintain communication plans to inform AI stakeholders as part of \nthe\
    \ deactivation or disengagement process of a specific GAI system (including for\
    \ \nopen-source models) or context of use, including reasons, workarounds, user\
    \ \naccess removal, alternative processes, contact information, etc. \nHuman-AI\
    \ Configuration"
  - "launch may need to be confidential. Government applications, particularly law\
    \ enforcement applications or \napplications that raise national security considerations,\
    \ may require confidential or limited engagement based \non system sensitivities\
    \ and preexisting oversight laws and structures. Concerns raised in this consultation\
    \ \nshould be documented, and the automated system developers were proposing to\
    \ create, use, or deploy should \nbe reconsidered based on this feedback."
- source_sentence: What is the main focus of the paper by Chandra et al. (2023) regarding
    Chinese influence operations?
  sentences:
  - "https://arxiv.org/abs/2403.06634 \nChandra, B. et al. (2023) Dismantling the\
    \ Disinformation Business of Chinese Influence Operations. \nRAND. https://www.rand.org/pubs/commentary/2023/10/dismantling-the-disinformation-business-of-\n\
    chinese.html \nCiriello, R. et al. (2024) Ethical Tensions in Human-AI Companionship:\
    \ A Dialectical Inquiry into Replika. \nResearchGate. https://www.researchgate.net/publication/374505266_Ethical_Tensions_in_Human-\n\
    AI_Companionship_A_Dialectical_Inquiry_into_Replika"
  - "monocultures,3” resulting from repeated use of the same model, or impacts on\
    \ access to \nopportunity, labor markets, and the creative economies.4 \n• \n\
    Source of risk: Risks may emerge from factors related to the design, training,\
    \ or operation of the \nGAI model itself, stemming in some cases from GAI model\
    \ or system inputs, and in other cases, \nfrom GAI system outputs. Many GAI risks,\
    \ however, originate from human behavior, including"
  - "limited to GAI model or system architecture, training mechanisms and libraries,\
    \ data types used for \ntraining or fine-tuning, levels of model access or availability\
    \ of model weights, and application or use \ncase context. \nOrganizations may\
    \ choose to tailor how they measure GAI risks based on these characteristics.\
    \ They may \nadditionally wish to allocate risk management resources relative\
    \ to the severity and likelihood of"
- source_sentence: What steps are being taken to enhance transparency and accountability
    in the GAI system?
  sentences:
  - "security, health, foreign relations, the environment, and the technological recovery\
    \ and use of resources, among \nother topics. OSTP leads interagency science and\
    \ technology policy coordination efforts, assists the Office of \nManagement and\
    \ Budget (OMB) with an annual review and analysis of Federal research and development\
    \ in \nbudgets, and serves as a source of scientific and technological analysis\
    \ and judgment for the President with"
  - "steps taken to update the GAI system to enhance transparency and \naccountability.\
    \ \nHuman-AI Configuration; Harmful \nBias and Homogenization \nMG-4.1-006 \nTrack\
    \ dataset modifications for provenance by monitoring data deletions, \nrectification\
    \ requests, and other changes that may impact the verifiability of \ncontent origins.\
    \ \nInformation Integrity"
  - "content. Some well-known techniques for provenance data tracking include digital\
    \ watermarking, \nmetadata recording, digital fingerprinting, and human authentication,\
    \ among others. \nProvenance Data Tracking Approaches \nProvenance data tracking\
    \ techniques for GAI systems can be used to track the history and origin of data\
    \ \ninputs, metadata, and synthetic content. Provenance data tracking records\
    \ the origin and history for"
- source_sentence: What are some examples of mechanisms for human consideration and
    fallback mentioned in the context?
  sentences:
  - "consequences resulting from the utilization of content provenance approaches\
    \ on users and \ncommunities. Furthermore, organizations can track and document\
    \ the provenance of datasets to identify \ninstances in which AI-generated data\
    \ is a potential root cause of performance issues with the GAI \nsystem. \nA.1.8.\
    \ Incident Disclosure \nOverview \nAI incidents can be defined as an “event, circumstance,\
    \ or series of events where the development, use,"
  - "fully impact rights, opportunities, or access. Automated systems that have greater\
    \ control over outcomes, \nprovide input to high-stakes decisions, relate to sensitive\
    \ domains, or otherwise have a greater potential to \nmeaningfully impact rights,\
    \ opportunities, or access should have greater availability (e.g., staffing) and\
    \ over­\nsight of human consideration and fallback mechanisms. \nAccessible. Mechanisms\
    \ for human consideration and fallback, whether in-person, on paper, by phone,\
    \ or"
  - '•

    Frida Polli, CEO, Pymetrics



    Karen Levy, Assistant Professor, Department of Information Science, Cornell University



    Natasha Duarte, Project Director, Upturn



    Elana Zeide, Assistant Professor, University of Nebraska College of Law



    Fabian Rogers, Constituent Advocate, Office of NY State Senator Jabari Brisport
    and Community

    Advocate and Floor Captain, Atlantic Plaza Towers Tenants Association'
- source_sentence: What mental health issues are associated with the increased use
    of technologies in schools and workplaces?
  sentences:
  - "but this approach may still produce harmful recommendations in response to other\
    \ less-explicit, novel \nprompts (also relevant to CBRN Information or Capabilities,\
    \ Data Privacy, Information Security, and \nObscene, Degrading and/or Abusive\
    \ Content). Crafting such prompts deliberately is known as \n“jailbreaking,” or,\
    \ manipulating prompts to circumvent output controls. Limitations of GAI systems\
    \ can be"
  - "external use, narrow vs. broad application scope, fine-tuning, and varieties of\
    \ \ndata sources (e.g., grounding, retrieval-augmented generation). \nData Privacy;\
    \ Intellectual \nProperty"
  - "technologies has increased in schools and workplaces, and, when coupled with\
    \ consequential management and \nevaluation decisions, it is leading to mental\
    \ health harms such as lowered self-confidence, anxiety, depression, and \na reduced\
    \ ability to use analytical reasoning.61 Documented patterns show that personal\
    \ data is being aggregated by \ndata brokers to profile communities in harmful\
    \ ways.62 The impact of all this data harvesting is corrosive,"
model-index:
- name: SentenceTransformer based on nomic-ai/nomic-embed-text-v1
  results:
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: Unknown
      type: unknown
    metrics:
    - type: cosine_accuracy@1
      value: 0.8584142394822006
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.9838187702265372
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.9951456310679612
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.9991909385113269
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.8584142394822006
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.32793959007551243
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.1990291262135922
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.09991909385113268
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.8584142394822006
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.9838187702265372
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.9951456310679612
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.9991909385113269
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.9417951214306157
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.9220443571171728
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.9221065926163013
      name: Cosine Map@100
    - type: dot_accuracy@1
      value: 0.8584142394822006
      name: Dot Accuracy@1
    - type: dot_accuracy@3
      value: 0.9838187702265372
      name: Dot Accuracy@3
    - type: dot_accuracy@5
      value: 0.9951456310679612
      name: Dot Accuracy@5
    - type: dot_accuracy@10
      value: 0.9991909385113269
      name: Dot Accuracy@10
    - type: dot_precision@1
      value: 0.8584142394822006
      name: Dot Precision@1
    - type: dot_precision@3
      value: 0.32793959007551243
      name: Dot Precision@3
    - type: dot_precision@5
      value: 0.1990291262135922
      name: Dot Precision@5
    - type: dot_precision@10
      value: 0.09991909385113268
      name: Dot Precision@10
    - type: dot_recall@1
      value: 0.8584142394822006
      name: Dot Recall@1
    - type: dot_recall@3
      value: 0.9838187702265372
      name: Dot Recall@3
    - type: dot_recall@5
      value: 0.9951456310679612
      name: Dot Recall@5
    - type: dot_recall@10
      value: 0.9991909385113269
      name: Dot Recall@10
    - type: dot_ndcg@10
      value: 0.9417951214306157
      name: Dot Ndcg@10
    - type: dot_mrr@10
      value: 0.9220443571171728
      name: Dot Mrr@10
    - type: dot_map@100
      value: 0.9221065926163013
      name: Dot Map@100
---

# SentenceTransformer based on nomic-ai/nomic-embed-text-v1

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [nomic-ai/nomic-embed-text-v1](https://huggingface.co/nomic-ai/nomic-embed-text-v1). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. In particular, **this model is trained on various documents which descibe frameworks for building ethical AI systems.** As such it performs well on matching questions to context in RAG applications.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [nomic-ai/nomic-embed-text-v1](https://huggingface.co/nomic-ai/nomic-embed-text-v1) <!-- at revision cc62377b015c53a3bf52bb2f4eb8c55326d3f162 -->
- **Maximum Sequence Length:** 8192 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: NomicBertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("deman539/nomic-embed-text-v1")
# Run inference
sentences = [
    'What mental health issues are associated with the increased use of technologies in schools and workplaces?',
    'technologies has increased in schools and workplaces, and, when coupled with consequential management and \nevaluation decisions, it is leading to mental health harms such as lowered self-confidence, anxiety, depression, and \na reduced ability to use analytical reasoning.61 Documented patterns show that personal data is being aggregated by \ndata brokers to profile communities in harmful ways.62 The impact of all this data harvesting is corrosive,',
    'but this approach may still produce harmful recommendations in response to other less-explicit, novel \nprompts (also relevant to CBRN Information or Capabilities, Data Privacy, Information Security, and \nObscene, Degrading and/or Abusive Content). Crafting such prompts deliberately is known as \n“jailbreaking,” or, manipulating prompts to circumvent output controls. Limitations of GAI systems can be',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Information Retrieval

* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.8584     |
| cosine_accuracy@3   | 0.9838     |
| cosine_accuracy@5   | 0.9951     |
| cosine_accuracy@10  | 0.9992     |
| cosine_precision@1  | 0.8584     |
| cosine_precision@3  | 0.3279     |
| cosine_precision@5  | 0.199      |
| cosine_precision@10 | 0.0999     |
| cosine_recall@1     | 0.8584     |
| cosine_recall@3     | 0.9838     |
| cosine_recall@5     | 0.9951     |
| cosine_recall@10    | 0.9992     |
| cosine_ndcg@10      | 0.9418     |
| cosine_mrr@10       | 0.922      |
| **cosine_map@100**  | **0.9221** |
| dot_accuracy@1      | 0.8584     |
| dot_accuracy@3      | 0.9838     |
| dot_accuracy@5      | 0.9951     |
| dot_accuracy@10     | 0.9992     |
| dot_precision@1     | 0.8584     |
| dot_precision@3     | 0.3279     |
| dot_precision@5     | 0.199      |
| dot_precision@10    | 0.0999     |
| dot_recall@1        | 0.8584     |
| dot_recall@3        | 0.9838     |
| dot_recall@5        | 0.9951     |
| dot_recall@10       | 0.9992     |
| dot_ndcg@10         | 0.9418     |
| dot_mrr@10          | 0.922      |
| dot_map@100         | 0.9221     |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### Unnamed Dataset


* Size: 2,459 training samples
* Columns: <code>sentence_0</code> and <code>sentence_1</code>
* Approximate statistics based on the first 1000 samples:
  |         | sentence_0                                                                       | sentence_1                                                                          |
  |:--------|:---------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
  | type    | string                                                                           | string                                                                              |
  | details | <ul><li>min: 2 tokens</li><li>mean: 18.7 tokens</li><li>max: 35 tokens</li></ul> | <ul><li>min: 22 tokens</li><li>mean: 93.19 tokens</li><li>max: 337 tokens</li></ul> |
* Samples:
  | sentence_0                                                                                                       | sentence_1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
  |:-----------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>What should organizations include in contracts to evaluate third-party GAI processes and standards?</code> | <code>services acquisition and value chain risk management; and legal compliance. <br>Data Privacy; Information <br>Integrity; Information Security; <br>Intellectual Property; Value Chain <br>and Component Integration <br>GV-6.1-006 Include clauses in contracts which allow an organization to evaluate third-party <br>GAI processes and standards.  <br>Information Integrity <br>GV-6.1-007 Inventory all third-party entities with access to organizational content and <br>establish approved GAI technology and service provider lists.</code> |
  | <code>What steps should be taken to manage third-party entities with access to organizational content?</code>    | <code>services acquisition and value chain risk management; and legal compliance. <br>Data Privacy; Information <br>Integrity; Information Security; <br>Intellectual Property; Value Chain <br>and Component Integration <br>GV-6.1-006 Include clauses in contracts which allow an organization to evaluate third-party <br>GAI processes and standards.  <br>Information Integrity <br>GV-6.1-007 Inventory all third-party entities with access to organizational content and <br>establish approved GAI technology and service provider lists.</code> |
  | <code>What should entities responsible for automated systems establish before deploying the system?</code>       | <code>Clear organizational oversight. Entities responsible for the development or use of automated systems <br>should lay out clear governance structures and procedures.  This includes clearly-stated governance proce­<br>dures before deploying the system, as well as responsibility of specific individuals or entities to oversee ongoing <br>assessment and mitigation. Organizational stakeholders including those with oversight of the business process</code>                                                                                  |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
  ```json
  {
      "loss": "MultipleNegativesRankingLoss",
      "matryoshka_dims": [
          768,
          512,
          256,
          128,
          64
      ],
      "matryoshka_weights": [
          1,
          1,
          1,
          1,
          1
      ],
      "n_dims_per_step": -1
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: steps
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 32
- `num_train_epochs`: 20
- `multi_dataset_batch_sampler`: round_robin

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 32
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1
- `num_train_epochs`: 20
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.0
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `eval_use_gather_object`: False
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: round_robin

</details>

### Training Logs
| Epoch   | Step | Training Loss | cosine_map@100 |
|:-------:|:----:|:-------------:|:--------------:|
| 0.6494  | 50   | -             | 0.8493         |
| 1.0     | 77   | -             | 0.8737         |
| 1.2987  | 100  | -             | 0.8677         |
| 1.9481  | 150  | -             | 0.8859         |
| 2.0     | 154  | -             | 0.8886         |
| 2.5974  | 200  | -             | 0.8913         |
| 3.0     | 231  | -             | 0.9058         |
| 3.2468  | 250  | -             | 0.8993         |
| 3.8961  | 300  | -             | 0.9077         |
| 4.0     | 308  | -             | 0.9097         |
| 4.5455  | 350  | -             | 0.9086         |
| 5.0     | 385  | -             | 0.9165         |
| 5.1948  | 400  | -             | 0.9141         |
| 5.8442  | 450  | -             | 0.9132         |
| 6.0     | 462  | -             | 0.9138         |
| 6.4935  | 500  | 0.3094        | 0.9137         |
| 7.0     | 539  | -             | 0.9166         |
| 7.1429  | 550  | -             | 0.9172         |
| 7.7922  | 600  | -             | 0.9160         |
| 8.0     | 616  | -             | 0.9169         |
| 8.4416  | 650  | -             | 0.9177         |
| 9.0     | 693  | -             | 0.9169         |
| 9.0909  | 700  | -             | 0.9177         |
| 9.7403  | 750  | -             | 0.9178         |
| 10.0    | 770  | -             | 0.9178         |
| 10.3896 | 800  | -             | 0.9189         |
| 11.0    | 847  | -             | 0.9180         |
| 11.0390 | 850  | -             | 0.9180         |
| 11.6883 | 900  | -             | 0.9188         |
| 12.0    | 924  | -             | 0.9192         |
| 12.3377 | 950  | -             | 0.9204         |
| 12.9870 | 1000 | 0.0571        | 0.9202         |
| 13.0    | 1001 | -             | 0.9201         |
| 13.6364 | 1050 | -             | 0.9212         |
| 14.0    | 1078 | -             | 0.9203         |
| 14.2857 | 1100 | -             | 0.9219         |
| 14.9351 | 1150 | -             | 0.9207         |
| 15.0    | 1155 | -             | 0.9207         |
| 15.5844 | 1200 | -             | 0.9210         |
| 16.0    | 1232 | -             | 0.9208         |
| 16.2338 | 1250 | -             | 0.9216         |
| 16.8831 | 1300 | -             | 0.9209         |
| 17.0    | 1309 | -             | 0.9209         |
| 17.5325 | 1350 | -             | 0.9216         |
| 18.0    | 1386 | -             | 0.9213         |
| 18.1818 | 1400 | -             | 0.9221         |
| 18.8312 | 1450 | -             | 0.9217         |
| 19.0    | 1463 | -             | 0.9217         |
| 19.4805 | 1500 | 0.0574        | 0.9225         |
| 20.0    | 1540 | -             | 0.9221         |


### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.1.1
- Transformers: 4.44.2
- PyTorch: 2.4.1+cu121
- Accelerate: 0.34.2
- Datasets: 3.0.0
- Tokenizers: 0.19.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning},
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}
```

#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->