demdecuong
commited on
Commit
·
c9ac5be
1
Parent(s):
6549356
Upload PPO LunarLander-v2 trained agent
Browse files- .gitattributes +1 -0
- README.md +28 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +94 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 286.61 +/- 20.17
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f62a5d08440>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f62a5d084d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f62a5d08560>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f62a5d085f0>", "_build": "<function ActorCriticPolicy._build at 0x7f62a5d08680>", "forward": "<function ActorCriticPolicy.forward at 0x7f62a5d08710>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f62a5d087a0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f62a5d08830>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f62a5d088c0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f62a5d08950>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f62a5d089e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f62a5d62090>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 32, "num_timesteps": 5013504, "_total_timesteps": 5000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651717451.281429, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQQAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABAAAAAAAANOKoL6OW4E/WkVDvpo7Fb8+T8S+3ZOdPAAAAAAAAAAAGtIOvT0GWrul2F0+Y5KOPYcyoLzWTeW7AACAPwAAgD9m+uE78EXAPpiSx7wh9rW+LZPQvLKwuL0AAAAAAAAAAM19bb0fUK27q+zmO9bOXDz5tga9FBw+PQAAgD8AAIA/ZnaoOqkPBrxwo3y7J6G1PL/EXj1APpa9AACAPwAAgD8NDIO9XOMWugo1/jun6ie2UcqYO0pFHLUAAAAAAAAAAPPuDr6hGB8/jli8O+zy/r75XR6+yvbtPQAAAAAAAAAAmrXGvdrYvT/CNM2+764dvojKE74d2Du+AAAAAAAAAACA9o09QDW2P2P71D4zTRm+12y1PTqXjj4AAAAAAAAAAM1rvbyNt7A/ScEQv031wL7TWX08ihspPAAAAAAAAAAAmnF/u8MfBLx91TA9D1t0PViSWr2e4Ic8AACAPwAAgD/mjSG+FgqxP9+YCr/5Ns++4F98vjJ/ab4AAAAAAAAAAJo3LD17urK6Hn9xOa3ZbDSXiJc4efKJuAAAgD8AAIA/MwEjPJ8co7sLIhs8ksGnPEv82bwyMTa5AACAPwAAgD+a0Q07pPeyP10nP7sLc5y+nrA9vAtjLz0AAAAAAAAAAPPFyb3hmuC60gcwvRd5kTxDi9o7CBl8vQAAAAAAAIA/5nQ0PlT5qby4dcs7l65muoOeFL6u7Dm7AACAPwAAgD/zANO9YFWlP7HLvb49hQy/PxcbvlVcl70AAAAAAAAAAC1maj74IAM/T++LviFdE794psQ++p2GvgAAAAAAAAAAACqiPHu8yTudXdc552yUvvO9eLzs+Uc9AAAAAAAAAAAzrPA8HL9xvL+ZC76LFn08RUfbPY7rTb0AAIA/AACAP4C4Nj6tjLs+5LuivnBSyb5xhia8Azg4vQAAAAAAAAAAmtnWOWy39Tz7oPg9C4mDvhDALT2e4i89AAAAAAAAAAAz+3W7fESuPw7jtb0zyha/7sQ4O3qZFLwAAAAAAAAAAM04GDxPPDW8X/uxvfBUDTzPS5g9KyzzvAAAgD8AAIA/ZkzNvHZderwW9m89/4BHPEl95r3reyA9AACAPwAAgD9mZv67kRq1PyZRSb9u4TM+JYETPLpnNj4AAAAAAAAAAJomDr3ZbqQ/3eg2vg27CL9giom9378FvQAAAAAAAAAAzT/OvI/earqUs42zy9ftLmnZAjqllc0zAACAPwAAgD+agSi7KTBouh3BWzb8Nx4xTOJKuq4uhrUAAIA/AACAPyYTiL1DoXq84/hZvA6rujxaEd89lqOVvQAAgD8AAIA/M8ZkvVWOcz/zPbS9hC8Nv/j3V72zzn69AAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSyBLCIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVkwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksghZSMAUOUdJRSlC4="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0027007999999999477, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVJBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIf6Zetwita0CUhpRSlIwBbJRNqQKMAXSUR0CxnH3Q+lj3dX2UKGgGaAloD0MIzT/6Jk2ecECUhpRSlGgVS9FoFkdAsZyEv114gXV9lChoBmgJaA9DCFjGhm5233FAlIaUUpRoFUvgaBZHQLGck4BV+7V1fZQoaAZoCWgPQwgNN+DzAz5xQJSGlFKUaBVNAwFoFkdAsZymrBCUo3V9lChoBmgJaA9DCHE486u5W3BAlIaUUpRoFUvhaBZHQLGcs8hLXcx1fZQoaAZoCWgPQwiXcOgtnptvQJSGlFKUaBVLx2gWR0CxnMQ6ltTDdX2UKGgGaAloD0MIrRQCuQRCcECUhpRSlGgVS+loFkdAsZzJiYsunXV9lChoBmgJaA9DCFu0AG1ruHFAlIaUUpRoFUu9aBZHQLGc7v4ubqh1fZQoaAZoCWgPQwj9a3nlej9xQJSGlFKUaBVL6GgWR0CxnQHpSrHVdX2UKGgGaAloD0MIiUFg5RBFckCUhpRSlGgVS+ZoFkdAsZ0Fa6jFh3V9lChoBmgJaA9DCO2cZoF2LHFAlIaUUpRoFUvcaBZHQLGdA/oq0+l1fZQoaAZoCWgPQwhE3QcgtXVxQJSGlFKUaBVL9GgWR0CxnR3531SPdX2UKGgGaAloD0MIkuf6PlxKckCUhpRSlGgVS+doFkdAsZ1NwfhddHV9lChoBmgJaA9DCGzPLAkQD3FAlIaUUpRoFUvKaBZHQLGdTWmxdIJ1fZQoaAZoCWgPQwif46PFmcxtQJSGlFKUaBVL42gWR0CxnVPiT+vRdX2UKGgGaAloD0MI9IsS9Bf2ckCUhpRSlGgVS99oFkdAsZ1hFAmiQHV9lChoBmgJaA9DCM6njlVK4XJAlIaUUpRoFUvxaBZHQLGdhGe+VTt1fZQoaAZoCWgPQwjl7J3RFn5xQJSGlFKUaBVL0mgWR0CxnZPmLcbjdX2UKGgGaAloD0MI4j0HluNdcUCUhpRSlGgVS8doFkdAsZ2maF23a3V9lChoBmgJaA9DCLxZg/dV/1FAlIaUUpRoFUujaBZHQLGdudQfp2V1fZQoaAZoCWgPQwgi3jr/dq9NQJSGlFKUaBVLm2gWR0CxncIplSTAdX2UKGgGaAloD0MINnSzPxBIc0CUhpRSlGgVS+hoFkdAsZ3P/aQFLXV9lChoBmgJaA9DCJoHsMjvmXNAlIaUUpRoFUvoaBZHQLGeDPn0TUR1fZQoaAZoCWgPQwjVsUrp2XpzQJSGlFKUaBVLz2gWR0Cxnjy2+fyxdX2UKGgGaAloD0MIl/+QfvvYQ0CUhpRSlGgVS4toFkdAsZ5WBDohZHV9lChoBmgJaA9DCOFdLuL7cnFAlIaUUpRoFUvZaBZHQLGeg22G7Bh1fZQoaAZoCWgPQwhtADYggjVxQJSGlFKUaBVLuGgWR0Cxnoru+h4/dX2UKGgGaAloD0MIGVkyx3JTc0CUhpRSlGgVS91oFkdAsZ6+CK77K3V9lChoBmgJaA9DCF9BmrFo3m5AlIaUUpRoFUvlaBZHQLGe2z19ORF1fZQoaAZoCWgPQwiEfqZet2BzQJSGlFKUaBVL32gWR0CxnvDHfdhzdX2UKGgGaAloD0MIFoielAnjcUCUhpRSlGgVS8poFkdAsZ82dVea8nV9lChoBmgJaA9DCCjueJOffHJAlIaUUpRoFUvbaBZHQLGfPpaiblR1fZQoaAZoCWgPQwgyj/zBgN9yQJSGlFKUaBVL1mgWR0Cxn1eo1k1/dX2UKGgGaAloD0MIr8xbdR2OcUCUhpRSlGgVTQIBaBZHQLGfaNbC79R1fZQoaAZoCWgPQwg3/686cuBwQJSGlFKUaBVL1GgWR0Cxn4ElqrR0dX2UKGgGaAloD0MIT1yOV2DFcUCUhpRSlGgVS99oFkdAsZ+U5bQkX3V9lChoBmgJaA9DCFPpJ5xdHHFAlIaUUpRoFUvAaBZHQLGflKT0QK91fZQoaAZoCWgPQwgctFcfz4BxQJSGlFKUaBVLwWgWR0Cxn5sx0uDjdX2UKGgGaAloD0MIh8PSwA8RckCUhpRSlGgVS9hoFkdAsZ+pmQKa5XV9lChoBmgJaA9DCKVquwm+PXFAlIaUUpRoFUvLaBZHQLGfut2LYPJ1fZQoaAZoCWgPQwhvRzgtOH1wQJSGlFKUaBVLx2gWR0Cxn8YatLcsdX2UKGgGaAloD0MI/aNv0rQTbkCUhpRSlGgVS+ZoFkdAsZ/IxN7BwnV9lChoBmgJaA9DCK5H4XrUGXJAlIaUUpRoFUu7aBZHQLGgAI3BHkN1fZQoaAZoCWgPQwjZsKay6DdyQJSGlFKUaBVLzmgWR0CxoAbs8gZCdX2UKGgGaAloD0MIDJBoAkVAc0CUhpRSlGgVS/RoFkdAsaAt0A93bHV9lChoBmgJaA9DCGk6OxmcdnBAlIaUUpRoFUvfaBZHQLGgSi6g/Tt1fZQoaAZoCWgPQwivQV96e/hxQJSGlFKUaBVLw2gWR0CxoGSx/ustdX2UKGgGaAloD0MI6PnTRnXkcUCUhpRSlGgVS95oFkdAsaCOpFTef3V9lChoBmgJaA9DCHbfMTy2i3NAlIaUUpRoFUvzaBZHQLGgi7/n4fx1fZQoaAZoCWgPQwju7gG6L3FyQJSGlFKUaBVL42gWR0CxoLcdYGMXdX2UKGgGaAloD0MIZOlDF1T0b0CUhpRSlGgVS9doFkdAsaC7NJOFg3V9lChoBmgJaA9DCMHlsWZk3G5AlIaUUpRoFUvHaBZHQLGgxjJuEVZ1fZQoaAZoCWgPQwgT9Bd6hI1zQJSGlFKUaBVNAwFoFkdAsaDXt3OfNHV9lChoBmgJaA9DCAlU/yASPHBAlIaUUpRoFUvmaBZHQLGg14i5d4V1fZQoaAZoCWgPQwigUiXK3vRxQJSGlFKUaBVLxmgWR0CxoPM+A3DOdX2UKGgGaAloD0MIlfHvMy6YUUCUhpRSlGgVS5FoFkdAsaDuWQfZEnV9lChoBmgJaA9DCJOmQdH8JHFAlIaUUpRoFUvTaBZHQLGhbdCE6DJ1fZQoaAZoCWgPQwjII7iR8hlyQJSGlFKUaBVL8mgWR0CxoaQNgBtDdX2UKGgGaAloD0MIsYo3Mg+7cUCUhpRSlGgVS+doFkdAsaGtvuPV/nV9lChoBmgJaA9DCK6f/rNm7nFAlIaUUpRoFUvdaBZHQLGhyOY6XBx1fZQoaAZoCWgPQwhET8qkRn5xQJSGlFKUaBVL12gWR0CxodI8yN4rdX2UKGgGaAloD0MIjKAxk+g1ckCUhpRSlGgVS8BoFkdAsaH5MK1G9nV9lChoBmgJaA9DCLPROT9FeHNAlIaUUpRoFUvlaBZHQLGidXtjTa11fZQoaAZoCWgPQwgBTu/ifZ9xQJSGlFKUaBVL1WgWR0CxopGY0EX+dX2UKGgGaAloD0MIHCYapCARdECUhpRSlGgVS9loFkdAsaKhnxri2nV9lChoBmgJaA9DCPgzvFnDonFAlIaUUpRoFUvSaBZHQLGixUG3WnV1fZQoaAZoCWgPQwiqLXWQ1+htQJSGlFKUaBVL32gWR0CxotLB9Cu2dX2UKGgGaAloD0MIieqtgS1XcUCUhpRSlGgVS+VoFkdAsaLY9SuQqHV9lChoBmgJaA9DCFYo0v2cVHJAlIaUUpRoFUvsaBZHQLGi15C4SYh1fZQoaAZoCWgPQwjde7jkuLhvQJSGlFKUaBVL3WgWR0Cxou79MsYmdX2UKGgGaAloD0MI4V8EjdkOckCUhpRSlGgVTQYBaBZHQLGi8xG2Cul1fZQoaAZoCWgPQwhihsYTwZVtQJSGlFKUaBVL6mgWR0Cxow/P1L8KdX2UKGgGaAloD0MIYFeTp6xcRECUhpRSlGgVS3toFkdAsaNE3kxREXV9lChoBmgJaA9DCBXikXi5ynBAlIaUUpRoFUvKaBZHQLGjUoOx0Mh1fZQoaAZoCWgPQwhVLlT+tchzQJSGlFKUaBVL6GgWR0Cxo2RZdOZcdX2UKGgGaAloD0MI8dWO4lxecECUhpRSlGgVS9loFkdAsaNyB7NSqHV9lChoBmgJaA9DCJwVURN9TnFAlIaUUpRoFUu2aBZHQLGjcXRgJC11fZQoaAZoCWgPQwgVcxB09HRwQJSGlFKUaBVNIQFoFkdAsaOFnyup0nV9lChoBmgJaA9DCFfqWRCKM3BAlIaUUpRoFUvtaBZHQLGjnAIppex1fZQoaAZoCWgPQwjZs+cyNa9wQJSGlFKUaBVL2GgWR0Cxo69kOI69dX2UKGgGaAloD0MIIlFoWXc1cECUhpRSlGgVS8FoFkdAsaO9gE2YOXV9lChoBmgJaA9DCJmEC3kEQm9AlIaUUpRoFUvRaBZHQLGjwek56t11fZQoaAZoCWgPQwiGPe3wV8VyQJSGlFKUaBVL4mgWR0Cxo85OBUaRdX2UKGgGaAloD0MIBDv+C8RwcECUhpRSlGgVS9xoFkdAsaPiq2jO9nV9lChoBmgJaA9DCLcMOEuJwnFAlIaUUpRoFUvfaBZHQLGkC/GEPDp1fZQoaAZoCWgPQwj/0MyTa8FyQJSGlFKUaBVL5GgWR0CxpDvwZwXJdX2UKGgGaAloD0MISUikbXzHcUCUhpRSlGgVS+1oFkdAsaQ+kk8ifXV9lChoBmgJaA9DCNV1qKZkSnBAlIaUUpRoFUveaBZHQLGk6lJYkmh1fZQoaAZoCWgPQwjsTnee+F1xQJSGlFKUaBVL6mgWR0CxpREXDWK/dX2UKGgGaAloD0MILjwvFRusckCUhpRSlGgVS+hoFkdAsaUvG96C2HV9lChoBmgJaA9DCKvtJvjmR3FAlIaUUpRoFUu9aBZHQLGlNLPD50t1fZQoaAZoCWgPQwiyLm6jQQJyQJSGlFKUaBVL0mgWR0CxpbvxMFlkdX2UKGgGaAloD0MI6EzaVB1fcUCUhpRSlGgVS/xoFkdAsaW70pVjqnV9lChoBmgJaA9DCPJgi91+GHBAlIaUUpRoFUvbaBZHQLGl0mNR3vB1fZQoaAZoCWgPQwhVNNb+jtpyQJSGlFKUaBVLz2gWR0CxpdZLytmudX2UKGgGaAloD0MIniXICGgJckCUhpRSlGgVS8xoFkdAsaXdhRZU1nV9lChoBmgJaA9DCGn9LQH4BnRAlIaUUpRoFUvLaBZHQLGl8uEEkjZ1fZQoaAZoCWgPQwi0rtFy4J9xQJSGlFKUaBVL12gWR0Cxph96HCXQdX2UKGgGaAloD0MIAyMva+I5cUCUhpRSlGgVS81oFkdAsaYd3np0OnV9lChoBmgJaA9DCIL917lpmW5AlIaUUpRoFU0hAWgWR0CxpikeEIw/dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 612, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 128, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6f54f7a9c582001df9677ea3f1b1be182d0aeb3da80337909aee28d232b82dbc
|
3 |
+
size 144691
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f62a5d08440>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f62a5d084d0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f62a5d08560>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f62a5d085f0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f62a5d08680>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f62a5d08710>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f62a5d087a0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f62a5d08830>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f62a5d088c0>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f62a5d08950>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f62a5d089e0>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f62a5d62090>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 32,
|
45 |
+
"num_timesteps": 5013504,
|
46 |
+
"_total_timesteps": 5000000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1651717451.281429,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQQAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABAAAAAAAANOKoL6OW4E/WkVDvpo7Fb8+T8S+3ZOdPAAAAAAAAAAAGtIOvT0GWrul2F0+Y5KOPYcyoLzWTeW7AACAPwAAgD9m+uE78EXAPpiSx7wh9rW+LZPQvLKwuL0AAAAAAAAAAM19bb0fUK27q+zmO9bOXDz5tga9FBw+PQAAgD8AAIA/ZnaoOqkPBrxwo3y7J6G1PL/EXj1APpa9AACAPwAAgD8NDIO9XOMWugo1/jun6ie2UcqYO0pFHLUAAAAAAAAAAPPuDr6hGB8/jli8O+zy/r75XR6+yvbtPQAAAAAAAAAAmrXGvdrYvT/CNM2+764dvojKE74d2Du+AAAAAAAAAACA9o09QDW2P2P71D4zTRm+12y1PTqXjj4AAAAAAAAAAM1rvbyNt7A/ScEQv031wL7TWX08ihspPAAAAAAAAAAAmnF/u8MfBLx91TA9D1t0PViSWr2e4Ic8AACAPwAAgD/mjSG+FgqxP9+YCr/5Ns++4F98vjJ/ab4AAAAAAAAAAJo3LD17urK6Hn9xOa3ZbDSXiJc4efKJuAAAgD8AAIA/MwEjPJ8co7sLIhs8ksGnPEv82bwyMTa5AACAPwAAgD+a0Q07pPeyP10nP7sLc5y+nrA9vAtjLz0AAAAAAAAAAPPFyb3hmuC60gcwvRd5kTxDi9o7CBl8vQAAAAAAAIA/5nQ0PlT5qby4dcs7l65muoOeFL6u7Dm7AACAPwAAgD/zANO9YFWlP7HLvb49hQy/PxcbvlVcl70AAAAAAAAAAC1maj74IAM/T++LviFdE794psQ++p2GvgAAAAAAAAAAACqiPHu8yTudXdc552yUvvO9eLzs+Uc9AAAAAAAAAAAzrPA8HL9xvL+ZC76LFn08RUfbPY7rTb0AAIA/AACAP4C4Nj6tjLs+5LuivnBSyb5xhia8Azg4vQAAAAAAAAAAmtnWOWy39Tz7oPg9C4mDvhDALT2e4i89AAAAAAAAAAAz+3W7fESuPw7jtb0zyha/7sQ4O3qZFLwAAAAAAAAAAM04GDxPPDW8X/uxvfBUDTzPS5g9KyzzvAAAgD8AAIA/ZkzNvHZderwW9m89/4BHPEl95r3reyA9AACAPwAAgD9mZv67kRq1PyZRSb9u4TM+JYETPLpnNj4AAAAAAAAAAJomDr3ZbqQ/3eg2vg27CL9giom9378FvQAAAAAAAAAAzT/OvI/earqUs42zy9ftLmnZAjqllc0zAACAPwAAgD+agSi7KTBouh3BWzb8Nx4xTOJKuq4uhrUAAIA/AACAPyYTiL1DoXq84/hZvA6rujxaEd89lqOVvQAAgD8AAIA/M8ZkvVWOcz/zPbS9hC8Nv/j3V72zzn69AAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSyBLCIaUjAFDlHSUUpQu"
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVkwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksghZSMAUOUdJRSlC4="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.0027007999999999477,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVJBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIf6Zetwita0CUhpRSlIwBbJRNqQKMAXSUR0CxnH3Q+lj3dX2UKGgGaAloD0MIzT/6Jk2ecECUhpRSlGgVS9FoFkdAsZyEv114gXV9lChoBmgJaA9DCFjGhm5233FAlIaUUpRoFUvgaBZHQLGck4BV+7V1fZQoaAZoCWgPQwgNN+DzAz5xQJSGlFKUaBVNAwFoFkdAsZymrBCUo3V9lChoBmgJaA9DCHE486u5W3BAlIaUUpRoFUvhaBZHQLGcs8hLXcx1fZQoaAZoCWgPQwiXcOgtnptvQJSGlFKUaBVLx2gWR0CxnMQ6ltTDdX2UKGgGaAloD0MIrRQCuQRCcECUhpRSlGgVS+loFkdAsZzJiYsunXV9lChoBmgJaA9DCFu0AG1ruHFAlIaUUpRoFUu9aBZHQLGc7v4ubqh1fZQoaAZoCWgPQwj9a3nlej9xQJSGlFKUaBVL6GgWR0CxnQHpSrHVdX2UKGgGaAloD0MIiUFg5RBFckCUhpRSlGgVS+ZoFkdAsZ0Fa6jFh3V9lChoBmgJaA9DCO2cZoF2LHFAlIaUUpRoFUvcaBZHQLGdA/oq0+l1fZQoaAZoCWgPQwhE3QcgtXVxQJSGlFKUaBVL9GgWR0CxnR3531SPdX2UKGgGaAloD0MIkuf6PlxKckCUhpRSlGgVS+doFkdAsZ1NwfhddHV9lChoBmgJaA9DCGzPLAkQD3FAlIaUUpRoFUvKaBZHQLGdTWmxdIJ1fZQoaAZoCWgPQwif46PFmcxtQJSGlFKUaBVL42gWR0CxnVPiT+vRdX2UKGgGaAloD0MI9IsS9Bf2ckCUhpRSlGgVS99oFkdAsZ1hFAmiQHV9lChoBmgJaA9DCM6njlVK4XJAlIaUUpRoFUvxaBZHQLGdhGe+VTt1fZQoaAZoCWgPQwjl7J3RFn5xQJSGlFKUaBVL0mgWR0CxnZPmLcbjdX2UKGgGaAloD0MI4j0HluNdcUCUhpRSlGgVS8doFkdAsZ2maF23a3V9lChoBmgJaA9DCLxZg/dV/1FAlIaUUpRoFUujaBZHQLGdudQfp2V1fZQoaAZoCWgPQwgi3jr/dq9NQJSGlFKUaBVLm2gWR0CxncIplSTAdX2UKGgGaAloD0MINnSzPxBIc0CUhpRSlGgVS+hoFkdAsZ3P/aQFLXV9lChoBmgJaA9DCJoHsMjvmXNAlIaUUpRoFUvoaBZHQLGeDPn0TUR1fZQoaAZoCWgPQwjVsUrp2XpzQJSGlFKUaBVLz2gWR0Cxnjy2+fyxdX2UKGgGaAloD0MIl/+QfvvYQ0CUhpRSlGgVS4toFkdAsZ5WBDohZHV9lChoBmgJaA9DCOFdLuL7cnFAlIaUUpRoFUvZaBZHQLGeg22G7Bh1fZQoaAZoCWgPQwhtADYggjVxQJSGlFKUaBVLuGgWR0Cxnoru+h4/dX2UKGgGaAloD0MIGVkyx3JTc0CUhpRSlGgVS91oFkdAsZ6+CK77K3V9lChoBmgJaA9DCF9BmrFo3m5AlIaUUpRoFUvlaBZHQLGe2z19ORF1fZQoaAZoCWgPQwiEfqZet2BzQJSGlFKUaBVL32gWR0CxnvDHfdhzdX2UKGgGaAloD0MIFoielAnjcUCUhpRSlGgVS8poFkdAsZ82dVea8nV9lChoBmgJaA9DCCjueJOffHJAlIaUUpRoFUvbaBZHQLGfPpaiblR1fZQoaAZoCWgPQwgyj/zBgN9yQJSGlFKUaBVL1mgWR0Cxn1eo1k1/dX2UKGgGaAloD0MIr8xbdR2OcUCUhpRSlGgVTQIBaBZHQLGfaNbC79R1fZQoaAZoCWgPQwg3/686cuBwQJSGlFKUaBVL1GgWR0Cxn4ElqrR0dX2UKGgGaAloD0MIT1yOV2DFcUCUhpRSlGgVS99oFkdAsZ+U5bQkX3V9lChoBmgJaA9DCFPpJ5xdHHFAlIaUUpRoFUvAaBZHQLGflKT0QK91fZQoaAZoCWgPQwgctFcfz4BxQJSGlFKUaBVLwWgWR0Cxn5sx0uDjdX2UKGgGaAloD0MIh8PSwA8RckCUhpRSlGgVS9hoFkdAsZ+pmQKa5XV9lChoBmgJaA9DCKVquwm+PXFAlIaUUpRoFUvLaBZHQLGfut2LYPJ1fZQoaAZoCWgPQwhvRzgtOH1wQJSGlFKUaBVLx2gWR0Cxn8YatLcsdX2UKGgGaAloD0MI/aNv0rQTbkCUhpRSlGgVS+ZoFkdAsZ/IxN7BwnV9lChoBmgJaA9DCK5H4XrUGXJAlIaUUpRoFUu7aBZHQLGgAI3BHkN1fZQoaAZoCWgPQwjZsKay6DdyQJSGlFKUaBVLzmgWR0CxoAbs8gZCdX2UKGgGaAloD0MIDJBoAkVAc0CUhpRSlGgVS/RoFkdAsaAt0A93bHV9lChoBmgJaA9DCGk6OxmcdnBAlIaUUpRoFUvfaBZHQLGgSi6g/Tt1fZQoaAZoCWgPQwivQV96e/hxQJSGlFKUaBVLw2gWR0CxoGSx/ustdX2UKGgGaAloD0MI6PnTRnXkcUCUhpRSlGgVS95oFkdAsaCOpFTef3V9lChoBmgJaA9DCHbfMTy2i3NAlIaUUpRoFUvzaBZHQLGgi7/n4fx1fZQoaAZoCWgPQwju7gG6L3FyQJSGlFKUaBVL42gWR0CxoLcdYGMXdX2UKGgGaAloD0MIZOlDF1T0b0CUhpRSlGgVS9doFkdAsaC7NJOFg3V9lChoBmgJaA9DCMHlsWZk3G5AlIaUUpRoFUvHaBZHQLGgxjJuEVZ1fZQoaAZoCWgPQwgT9Bd6hI1zQJSGlFKUaBVNAwFoFkdAsaDXt3OfNHV9lChoBmgJaA9DCAlU/yASPHBAlIaUUpRoFUvmaBZHQLGg14i5d4V1fZQoaAZoCWgPQwigUiXK3vRxQJSGlFKUaBVLxmgWR0CxoPM+A3DOdX2UKGgGaAloD0MIlfHvMy6YUUCUhpRSlGgVS5FoFkdAsaDuWQfZEnV9lChoBmgJaA9DCJOmQdH8JHFAlIaUUpRoFUvTaBZHQLGhbdCE6DJ1fZQoaAZoCWgPQwjII7iR8hlyQJSGlFKUaBVL8mgWR0CxoaQNgBtDdX2UKGgGaAloD0MIsYo3Mg+7cUCUhpRSlGgVS+doFkdAsaGtvuPV/nV9lChoBmgJaA9DCK6f/rNm7nFAlIaUUpRoFUvdaBZHQLGhyOY6XBx1fZQoaAZoCWgPQwhET8qkRn5xQJSGlFKUaBVL12gWR0CxodI8yN4rdX2UKGgGaAloD0MIjKAxk+g1ckCUhpRSlGgVS8BoFkdAsaH5MK1G9nV9lChoBmgJaA9DCLPROT9FeHNAlIaUUpRoFUvlaBZHQLGidXtjTa11fZQoaAZoCWgPQwgBTu/ifZ9xQJSGlFKUaBVL1WgWR0CxopGY0EX+dX2UKGgGaAloD0MIHCYapCARdECUhpRSlGgVS9loFkdAsaKhnxri2nV9lChoBmgJaA9DCPgzvFnDonFAlIaUUpRoFUvSaBZHQLGixUG3WnV1fZQoaAZoCWgPQwiqLXWQ1+htQJSGlFKUaBVL32gWR0CxotLB9Cu2dX2UKGgGaAloD0MIieqtgS1XcUCUhpRSlGgVS+VoFkdAsaLY9SuQqHV9lChoBmgJaA9DCFYo0v2cVHJAlIaUUpRoFUvsaBZHQLGi15C4SYh1fZQoaAZoCWgPQwjde7jkuLhvQJSGlFKUaBVL3WgWR0Cxou79MsYmdX2UKGgGaAloD0MI4V8EjdkOckCUhpRSlGgVTQYBaBZHQLGi8xG2Cul1fZQoaAZoCWgPQwhihsYTwZVtQJSGlFKUaBVL6mgWR0Cxow/P1L8KdX2UKGgGaAloD0MIYFeTp6xcRECUhpRSlGgVS3toFkdAsaNE3kxREXV9lChoBmgJaA9DCBXikXi5ynBAlIaUUpRoFUvKaBZHQLGjUoOx0Mh1fZQoaAZoCWgPQwhVLlT+tchzQJSGlFKUaBVL6GgWR0Cxo2RZdOZcdX2UKGgGaAloD0MI8dWO4lxecECUhpRSlGgVS9loFkdAsaNyB7NSqHV9lChoBmgJaA9DCJwVURN9TnFAlIaUUpRoFUu2aBZHQLGjcXRgJC11fZQoaAZoCWgPQwgVcxB09HRwQJSGlFKUaBVNIQFoFkdAsaOFnyup0nV9lChoBmgJaA9DCFfqWRCKM3BAlIaUUpRoFUvtaBZHQLGjnAIppex1fZQoaAZoCWgPQwjZs+cyNa9wQJSGlFKUaBVL2GgWR0Cxo69kOI69dX2UKGgGaAloD0MIIlFoWXc1cECUhpRSlGgVS8FoFkdAsaO9gE2YOXV9lChoBmgJaA9DCJmEC3kEQm9AlIaUUpRoFUvRaBZHQLGjwek56t11fZQoaAZoCWgPQwiGPe3wV8VyQJSGlFKUaBVL4mgWR0Cxo85OBUaRdX2UKGgGaAloD0MIBDv+C8RwcECUhpRSlGgVS9xoFkdAsaPiq2jO9nV9lChoBmgJaA9DCLcMOEuJwnFAlIaUUpRoFUvfaBZHQLGkC/GEPDp1fZQoaAZoCWgPQwj/0MyTa8FyQJSGlFKUaBVL5GgWR0CxpDvwZwXJdX2UKGgGaAloD0MISUikbXzHcUCUhpRSlGgVS+1oFkdAsaQ+kk8ifXV9lChoBmgJaA9DCNV1qKZkSnBAlIaUUpRoFUveaBZHQLGk6lJYkmh1fZQoaAZoCWgPQwjsTnee+F1xQJSGlFKUaBVL6mgWR0CxpREXDWK/dX2UKGgGaAloD0MILjwvFRusckCUhpRSlGgVS+hoFkdAsaUvG96C2HV9lChoBmgJaA9DCKvtJvjmR3FAlIaUUpRoFUu9aBZHQLGlNLPD50t1fZQoaAZoCWgPQwiyLm6jQQJyQJSGlFKUaBVL0mgWR0CxpbvxMFlkdX2UKGgGaAloD0MI6EzaVB1fcUCUhpRSlGgVS/xoFkdAsaW70pVjqnV9lChoBmgJaA9DCPJgi91+GHBAlIaUUpRoFUvbaBZHQLGl0mNR3vB1fZQoaAZoCWgPQwhVNNb+jtpyQJSGlFKUaBVLz2gWR0CxpdZLytmudX2UKGgGaAloD0MIniXICGgJckCUhpRSlGgVS8xoFkdAsaXdhRZU1nV9lChoBmgJaA9DCGn9LQH4BnRAlIaUUpRoFUvLaBZHQLGl8uEEkjZ1fZQoaAZoCWgPQwi0rtFy4J9xQJSGlFKUaBVL12gWR0Cxph96HCXQdX2UKGgGaAloD0MIAyMva+I5cUCUhpRSlGgVS81oFkdAsaYd3np0OnV9lChoBmgJaA9DCIL917lpmW5AlIaUUpRoFU0hAWgWR0CxpikeEIw/dWUu"
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 612,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 128,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:79b2e966c86942d4dcafe9e99cab702836111ef9ef396252644aa1ee3a08c780
|
3 |
+
size 84893
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5439b521c0396e241e5fa80c75d80174bece4476bae1f4c978ac00b7b665ddb2
|
3 |
+
size 43201
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:376b41111dd0bb8ba72c62a9f76a9226a82549615feb2b1f9e3614f5ae433acf
|
3 |
+
size 179639
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 286.6061289202569, "std_reward": 20.166199680983983, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-05T03:41:06.097154"}
|