demelin's picture
Initial commit.
cdee89c verified
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7b00f6cee200>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7b00f6cee290>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7b00f6cee320>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7b00f6cee3b0>", "_build": "<function ActorCriticPolicy._build at 0x7b00f6cee440>", "forward": "<function ActorCriticPolicy.forward at 0x7b00f6cee4d0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7b00f6cee560>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7b00f6cee5f0>", "_predict": "<function ActorCriticPolicy._predict at 0x7b00f6cee680>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7b00f6cee710>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7b00f6cee7a0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7b00f6cee830>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7b00f6e81040>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1720199451171520867, "learning_rate": 0.003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGYKO7x7Iqu64LvpuloQGrZ0Lwq5nhMGOgAAgD8AAIA/mvLrvBSkrrpriW68j2aBtLutuzkV2gM0AACAPwAAgD/mneM9jz4Cunq3rTumdCU4qcPBun8Ck7cAAIA/AACAP8300T24Vry5xtmIuqlAtbUUNpE7FdujOQAAAAAAAIA/gMAVPcPJL7pj+707DjYXN40eU7ufVrW6AACAPwAAgD8gQku+fyx2PgzexD7fRWG+biYevD5BJzsAAAAAAAAAAADGir1P3Zg/Q3WCvqrUD79YJY29yPLmvQAAAAAAAAAAWrTMPRTOh7piFTS7AA41NVIkH7v1mVE6AACAPwAAgD/NvjY99sguus+NCbv3fcA1aeHvOiYIMbUAAIA/AACAPzOldzwpGHq6knGPuUuNLDYbyXQ67iunOAAAgD8AAIA/I22KPlVFCz7JP7++dMMnvspa8Dz1hSS+AAAAAAAAAACzB9w9j05nuhGVjrsrjoO1WgDKugsbpzoAAAAAAACAP83zfz3D8W26WkrvOnx30DXTSqG671UMugAAgD8AAIA/AOmavBR4g7o6N9i6K57QtbIQkzpqE/w5AACAPwAAgD8AdrS87FHXt6Gkqbpi8861f0IwO6F/yDkAAIA/AACAP0AStD3LzFk/3/FBPkE/D783HCU9hb5aPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGHSxoh6jWWMAWyUTegDjAF0lEdAk3cn8n/kvXV9lChoBkdAZjyKl54W12gHTegDaAhHQJN3KRdQfp51fZQoaAZHQGadP863iJhoB03oA2gIR0CTe3irksBidX2UKGgGR0BgUfsu3+dcaAdN6ANoCEdAk38F8LKFI3V9lChoBkdAZsh0pVjqfWgHTegDaAhHQJN/ibc45tF1fZQoaAZHQGhgt3np0OpoB03oA2gIR0CTg5P/7zkIdX2UKGgGR0BmL5Nh3JPqaAdN6ANoCEdAk4O3jlxOtXV9lChoBkdAZ9rWp6yB1GgHTegDaAhHQJOEU9gWrOt1fZQoaAZHQGi0NPHktEpoB03oA2gIR0CTh54H5aePdX2UKGgGR0BkvKyGBWgfaAdN6ANoCEdAk4iNc4YJmnV9lChoBkdAYn2D9wWFe2gHTegDaAhHQJOSIQrc0tR1fZQoaAZHQGNKAZKnNxFoB03oA2gIR0CTloQHAymAdX2UKGgGR0BwweIInjQzaAdNyQJoCEdAk5t7CJoCdXV9lChoBkdAZabkzXSSeWgHTegDaAhHQJOfS2CuloF1fZQoaAZHQGG0gdGRV6xoB03oA2gIR0CToBYZVGTcdX2UKGgGR0Bhx6Oq//NraAdN6ANoCEdAk6L7oB7u2XV9lChoBkdAaA8bQTmGNGgHTegDaAhHQJOjidtl7MR1fZQoaAZHQGa/W25QP7NoB03oA2gIR0CTuiKTjebedX2UKGgGR0BofnkgfU4JaAdN6ANoCEdAk77C6UaAF3V9lChoBkdAaMixgy/KyWgHTegDaAhHQJPCllGwzLx1fZQoaAZHQGa6hNVR1oxoB03oA2gIR0CTwy77sOXmdX2UKGgGR0Bjs5AMUh3aaAdN6ANoCEdAk8jAyuZCwHV9lChoBkdAZAluTibUgGgHTegDaAhHQJPI91IRRMx1fZQoaAZHQGTZ/VRUFStoB03oA2gIR0CTydwSrYGudX2UKGgGR0BiZxmTTvy9aAdN6ANoCEdAk85YZQ53knV9lChoBkdAZ3TXwsoUjGgHTegDaAhHQJPPjbL2YfJ1fZQoaAZHQGSzY7q6e5FoB03oA2gIR0CT2E0EHMUzdX2UKGgGR0BhC5LXcxj8aAdN6ANoCEdAk9uU9lmOEXV9lChoBkdAZiTbdJrckGgHTegDaAhHQJPfaIacZtN1fZQoaAZHQGJ7OLiuMddoB03oA2gIR0CT41ATqSowdX2UKGgGR0BksWq1gH/taAdN6ANoCEdAk+QZNO/L1XV9lChoBkdAZNxcclw97mgHTegDaAhHQJPnKsV+I/J1fZQoaAZHQGk1LLQokRloB03oA2gIR0CT58DVpbljdX2UKGgGR0BiIK4Wk8A8aAdN6ANoCEdAlADL92ovSXV9lChoBkdAYlki7Ciyp2gHTegDaAhHQJQGJUaQ3gl1fZQoaAZHQGT+XyI55qxoB03oA2gIR0CUCeUbT+efdX2UKGgGR0Bl9hB/qgRLaAdN6ANoCEdAlAp84PwuunV9lChoBkdAYocerdWQwWgHTegDaAhHQJQOZ2/zreJ1fZQoaAZHQGBm1x0dRzloB03oA2gIR0CUDoq59Vm0dX2UKGgGR0BkFxubZvkzaAdN6ANoCEdAlA8oixFAmnV9lChoBkdAZZaUxEfDDWgHTegDaAhHQJQSbEaVD8d1fZQoaAZHQGBwHzxwyZdoB03oA2gIR0CUE0lIEr5JdX2UKGgGR0Bk3EdaMaS+aAdN6ANoCEdAlBtpWaMJhXV9lChoBkdAYFiXAM2FWWgHTegDaAhHQJQejTodMkB1fZQoaAZHQGiQdSl3yI5oB03oA2gIR0CUIhbVjI7vdX2UKGgGR0BEjRTbWVeKaAdLlWgIR0CUJXT3IuGsdX2UKGgGR0BnXoN5MURGaAdN6ANoCEdAlCXIlt0mt3V9lChoBkdAXla9zwMH8mgHTegDaAhHQJQmiTeO4oZ1fZQoaAZHQGJmlaSs8xNoB03oA2gIR0CUKWLkS26TdX2UKGgGR0Bg///JeVs2aAdN6ANoCEdAlCnjtG/etXV9lChoBkdASQ1hsqJ/G2gHS6VoCEdAlEIIakyk9HV9lChoBkdAZruqNp/PPmgHTegDaAhHQJRDGqFRHgB1fZQoaAZHQGPwiXhOxjdoB03oA2gIR0CUR11J17pndX2UKGgGR0BnZtM/QjUvaAdN6ANoCEdAlEr/zOHFgnV9lChoBkdAYQSiyIHkcWgHTegDaAhHQJRLhChN/ON1fZQoaAZHQGHpOP/7zkJoB03oA2gIR0CUT0MXrMTwdX2UKGgGR0BoEtschkiEaAdN6ANoCEdAlE9ldLQHA3V9lChoBkdAZB9kJa7mMmgHTegDaAhHQJRP9FTefqZ1fZQoaAZHQGXW1schkiFoB03oA2gIR0CUUwD9OymidX2UKGgGR0Bn0CYLLIPtaAdN6ANoCEdAlFPZ1mrbQHV9lChoBkdAZNPXuE25x2gHTegDaAhHQJRcAiaAnUl1fZQoaAZHQGSJgWzniedoB03oA2gIR0CUZLtSydFwdX2UKGgGR0BkPClabF0gaAdN6ANoCEdAlGnwam4y5HV9lChoBkdAZRU3I+4b0mgHTegDaAhHQJRqcrpaA4J1fZQoaAZHQGGW7HyVfNRoB03oA2gIR0CUbpKsdT5wdX2UKGgGR0BmOqbH6uW9aAdN6ANoCEdAlG8pFb3XZ3V9lChoBkdAY/HY2bXpW2gHTegDaAhHQJSEzWmP5pJ1fZQoaAZHQGcm9NnGsFNoB03oA2gIR0CUhgAIppevdX2UKGgGR0BkAy5I6KceaAdN6ANoCEdAlIqs1n/T9nV9lChoBkdAYAz1klNUO2gHTegDaAhHQJSOaZqmCRR1fZQoaAZHQGa4cOCoS+RoB03oA2gIR0CUjvZOzposdX2UKGgGR0Bjb2wxFiKBaAdN6ANoCEdAlJMsa86FNHV9lChoBkdAZ+N6wdKdx2gHTegDaAhHQJSTW1LJ0XB1fZQoaAZHQGalh8pkPMBoB03oA2gIR0CUlDWpqASWdX2UKGgGR0BlFyYoiLVGaAdN6ANoCEdAlJidJOFg2XV9lChoBkdAZG8JokAxSGgHTegDaAhHQJSZ6a5PM0R1fZQoaAZHQGQ75u63AmBoB03oA2gIR0CUpAkona37dX2UKGgGR0Bn2+SjgydnaAdN6ANoCEdAlKulxbSql3V9lChoBkdAYyRlEJBw/GgHTegDaAhHQJSvo6eXiR51fZQoaAZHQGeBssH0K7ZoB03oA2gIR0CUsAnIhhYvdX2UKGgGR0Bj12maYu01aAdN6ANoCEdAlLRYVZcLSnV9lChoBkdAZ+9a3Zwn6WgHTegDaAhHQJS0+E7GNrF1fZQoaAZHQGj4h+WnjyZoB03oA2gIR0CUuXBpHqeLdX2UKGgGR0BkIrrmhdt3aAdN6ANoCEdAlM4k5uIhyXV9lChoBkdAaidsEaESNGgHTegDaAhHQJTUSCEpRXR1fZQoaAZHQGWIv7el9BtoB03oA2gIR0CU2FJsfq5cdX2UKGgGR0BmWXQWvbGnaAdN6ANoCEdAlNjrOE/SpnV9lChoBkdAZUA9cry1/mgHTegDaAhHQJTdVUaQ3gl1fZQoaAZHQGXaSIHkcS5oB03oA2gIR0CU3XyjpLVXdX2UKGgGR0BkJcz0pVjqaAdN6ANoCEdAlN4ooiLVF3V9lChoBkdAYVWGMXJo02gHTegDaAhHQJThpuP3i711fZQoaAZHQGap4mTkhidoB03oA2gIR0CU4p4/eLvUdX2UKGgGR0BgY52dNFjNaAdN6ANoCEdAlOuk0iyIHnV9lChoBkdAaMUdz4k/r2gHTegDaAhHQJTzKDPGACp1fZQoaAZHQGSVIna37UJoB03oA2gIR0CU9s97WuoxdX2UKGgGR0BiCkmjTKDDaAdN6ANoCEdAlPcjArQPZ3V9lChoBkdAZeV/m1YyPGgHTegDaAhHQJT7TlZHNHJ1fZQoaAZHQGFCoOx0MgFoB03oA2gIR0CU/ADZDiOvdX2UKGgGR0BgzUSGrS3LaAdN6ANoCEdAlQFA3T/hl3V9lChoBkdAYvh3EAHVw2gHTegDaAhHQJUCp0Syt3h1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9ok3S8an76hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.0+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}