denis-gordeev
commited on
Commit
·
cdc4428
1
Parent(s):
0248880
End of training
Browse files- .gitattributes +1 -0
- README.md +345 -0
- added_tokens.json +3 -0
- config.json +225 -0
- model.safetensors +3 -0
- special_tokens_map.json +15 -0
- spm.model +3 -0
- tokenizer.json +3 -0
- tokenizer_config.json +58 -0
- training_args.bin +3 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,345 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
base_model: microsoft/mdeberta-v3-base
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
model-index:
|
7 |
+
- name: multilabel_ner
|
8 |
+
results: []
|
9 |
+
---
|
10 |
+
|
11 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
12 |
+
should probably proofread and complete it, then remove this comment. -->
|
13 |
+
|
14 |
+
# multilabel_ner
|
15 |
+
|
16 |
+
This model is a fine-tuned version of [microsoft/mdeberta-v3-base](https://huggingface.co/microsoft/mdeberta-v3-base) on the None dataset.
|
17 |
+
It achieves the following results on the evaluation set:
|
18 |
+
- Loss: 0.0096
|
19 |
+
- F1 Micro: 0.5837
|
20 |
+
- O F1 Micro: 0.6370
|
21 |
+
- O Recall Micro: 0.9242
|
22 |
+
- O Precision Micro: 0.4860
|
23 |
+
- B-person F1 Micro: 0.9639
|
24 |
+
- B-person Recall Micro: 0.9816
|
25 |
+
- B-person Precision Micro: 0.9468
|
26 |
+
- B-norp F1 Micro: 0.6190
|
27 |
+
- B-norp Recall Micro: 0.8667
|
28 |
+
- B-norp Precision Micro: 0.4815
|
29 |
+
- B-commodity F1 Micro: 0.7553
|
30 |
+
- B-commodity Recall Micro: 0.9470
|
31 |
+
- B-commodity Precision Micro: 0.6281
|
32 |
+
- B-date F1 Micro: 0.8386
|
33 |
+
- B-date Recall Micro: 0.8471
|
34 |
+
- B-date Precision Micro: 0.8304
|
35 |
+
- I-date F1 Micro: 0.6419
|
36 |
+
- I-date Recall Micro: 0.9492
|
37 |
+
- I-date Precision Micro: 0.4849
|
38 |
+
- B-country F1 Micro: 0.6152
|
39 |
+
- B-country Recall Micro: 0.9765
|
40 |
+
- B-country Precision Micro: 0.4490
|
41 |
+
- B-economic Sector F1 Micro: 0.5576
|
42 |
+
- B-economic Sector Recall Micro: 0.5897
|
43 |
+
- B-economic Sector Precision Micro: 0.5287
|
44 |
+
- I-economic Sector F1 Micro: 0.2517
|
45 |
+
- I-economic Sector Recall Micro: 0.6667
|
46 |
+
- I-economic Sector Precision Micro: 0.1551
|
47 |
+
- B-news Source F1 Micro: 0.7988
|
48 |
+
- B-news Source Recall Micro: 0.8327
|
49 |
+
- B-news Source Precision Micro: 0.7677
|
50 |
+
- B-profession F1 Micro: 0.8088
|
51 |
+
- B-profession Recall Micro: 0.9464
|
52 |
+
- B-profession Precision Micro: 0.7061
|
53 |
+
- I-news Source F1 Micro: 0.4808
|
54 |
+
- I-news Source Recall Micro: 0.8400
|
55 |
+
- I-news Source Precision Micro: 0.3368
|
56 |
+
- I-person F1 Micro: 0.3381
|
57 |
+
- I-person Recall Micro: 0.996
|
58 |
+
- I-person Precision Micro: 0.2036
|
59 |
+
- B-organization F1 Micro: 0.8350
|
60 |
+
- B-organization Recall Micro: 0.8993
|
61 |
+
- B-organization Precision Micro: 0.7794
|
62 |
+
- I-profession F1 Micro: 0.2462
|
63 |
+
- I-profession Recall Micro: 0.8030
|
64 |
+
- I-profession Precision Micro: 0.1454
|
65 |
+
- B-event F1 Micro: 0.5658
|
66 |
+
- B-event Recall Micro: 0.5436
|
67 |
+
- B-event Precision Micro: 0.5899
|
68 |
+
- B-city F1 Micro: 0.625
|
69 |
+
- B-city Recall Micro: 0.8904
|
70 |
+
- B-city Precision Micro: 0.4815
|
71 |
+
- B-gpe F1 Micro: 0.6760
|
72 |
+
- B-gpe Recall Micro: 0.9380
|
73 |
+
- B-gpe Precision Micro: 0.5284
|
74 |
+
- I-event F1 Micro: 0.2577
|
75 |
+
- I-event Recall Micro: 0.3776
|
76 |
+
- I-event Precision Micro: 0.1956
|
77 |
+
- B-group F1 Micro: 0.6667
|
78 |
+
- B-group Recall Micro: 0.75
|
79 |
+
- B-group Precision Micro: 0.6
|
80 |
+
- B-ordinal F1 Micro: 0.5306
|
81 |
+
- B-ordinal Recall Micro: 0.8125
|
82 |
+
- B-ordinal Precision Micro: 0.3939
|
83 |
+
- B-product F1 Micro: 0.6683
|
84 |
+
- B-product Recall Micro: 0.8232
|
85 |
+
- B-product Precision Micro: 0.5625
|
86 |
+
- I-organization F1 Micro: 0.3128
|
87 |
+
- I-organization Recall Micro: 0.8425
|
88 |
+
- I-organization Precision Micro: 0.1921
|
89 |
+
- B-money F1 Micro: 0.8530
|
90 |
+
- B-money Recall Micro: 0.8947
|
91 |
+
- B-money Precision Micro: 0.8151
|
92 |
+
- I-money F1 Micro: 0.6259
|
93 |
+
- I-money Recall Micro: 0.9644
|
94 |
+
- I-money Precision Micro: 0.4632
|
95 |
+
- B-currency F1 Micro: 0.7441
|
96 |
+
- B-currency Recall Micro: 0.9658
|
97 |
+
- B-currency Precision Micro: 0.6052
|
98 |
+
- B-percent F1 Micro: 0.8639
|
99 |
+
- B-percent Recall Micro: 0.8902
|
100 |
+
- B-percent Precision Micro: 0.8391
|
101 |
+
- I-percent F1 Micro: 0.6995
|
102 |
+
- I-percent Recall Micro: 0.9846
|
103 |
+
- I-percent Precision Micro: 0.5424
|
104 |
+
- I-group F1 Micro: 0.1844
|
105 |
+
- I-group Recall Micro: 0.4836
|
106 |
+
- I-group Precision Micro: 0.1139
|
107 |
+
- B-cardinal F1 Micro: 0.6903
|
108 |
+
- B-cardinal Recall Micro: 0.7358
|
109 |
+
- B-cardinal Precision Micro: 0.65
|
110 |
+
- B-law F1 Micro: 0.3704
|
111 |
+
- B-law Recall Micro: 0.3571
|
112 |
+
- B-law Precision Micro: 0.3846
|
113 |
+
- I-law F1 Micro: 0.3246
|
114 |
+
- I-law Recall Micro: 0.3936
|
115 |
+
- I-law Precision Micro: 0.2761
|
116 |
+
- B-fac F1 Micro: 0.6910
|
117 |
+
- B-fac Recall Micro: 0.6910
|
118 |
+
- B-fac Precision Micro: 0.6910
|
119 |
+
- I-fac F1 Micro: 0.3007
|
120 |
+
- I-fac Recall Micro: 0.7151
|
121 |
+
- I-fac Precision Micro: 0.1904
|
122 |
+
- B-age F1 Micro: 0.8649
|
123 |
+
- B-age Recall Micro: 0.7619
|
124 |
+
- B-age Precision Micro: 1.0
|
125 |
+
- I-city F1 Micro: 0.1047
|
126 |
+
- I-city Recall Micro: 0.6429
|
127 |
+
- I-city Precision Micro: 0.0570
|
128 |
+
- B-work Of Art F1 Micro: 0.3158
|
129 |
+
- B-work Of Art Recall Micro: 0.375
|
130 |
+
- B-work Of Art Precision Micro: 0.2727
|
131 |
+
- I-work Of Art F1 Micro: 0.3721
|
132 |
+
- I-work Of Art Recall Micro: 0.5
|
133 |
+
- I-work Of Art Precision Micro: 0.2963
|
134 |
+
- B-region F1 Micro: 0.8070
|
135 |
+
- B-region Recall Micro: 0.7731
|
136 |
+
- B-region Precision Micro: 0.8440
|
137 |
+
- I-region F1 Micro: 0.2817
|
138 |
+
- I-region Recall Micro: 0.8197
|
139 |
+
- I-region Precision Micro: 0.1701
|
140 |
+
- I-cardinal F1 Micro: 0.3851
|
141 |
+
- I-cardinal Recall Micro: 0.4831
|
142 |
+
- I-cardinal Precision Micro: 0.3202
|
143 |
+
- I-currency F1 Micro: 0.0
|
144 |
+
- I-currency Recall Micro: 0.0
|
145 |
+
- I-currency Precision Micro: 0.0
|
146 |
+
- B-quantity F1 Micro: 0.7311
|
147 |
+
- B-quantity Recall Micro: 0.7311
|
148 |
+
- B-quantity Precision Micro: 0.7311
|
149 |
+
- I-quantity F1 Micro: 0.4889
|
150 |
+
- I-quantity Recall Micro: 0.7989
|
151 |
+
- I-quantity Precision Micro: 0.3522
|
152 |
+
- B-crime F1 Micro: 0.3736
|
153 |
+
- B-crime Recall Micro: 0.4048
|
154 |
+
- B-crime Precision Micro: 0.3469
|
155 |
+
- I-crime F1 Micro: 0.3245
|
156 |
+
- I-crime Recall Micro: 0.5648
|
157 |
+
- I-crime Precision Micro: 0.2276
|
158 |
+
- B-trade Agreement F1 Micro: 0.7170
|
159 |
+
- B-trade Agreement Recall Micro: 0.7037
|
160 |
+
- B-trade Agreement Precision Micro: 0.7308
|
161 |
+
- B-nationality F1 Micro: 0.0
|
162 |
+
- B-nationality Recall Micro: 0.0
|
163 |
+
- B-nationality Precision Micro: 0.0
|
164 |
+
- B-family F1 Micro: 0.5
|
165 |
+
- B-family Recall Micro: 0.8889
|
166 |
+
- B-family Precision Micro: 0.3478
|
167 |
+
- I-family F1 Micro: 0.0
|
168 |
+
- I-family Recall Micro: 0.0
|
169 |
+
- I-family Precision Micro: 0.0
|
170 |
+
- I-product F1 Micro: 0.2021
|
171 |
+
- I-product Recall Micro: 0.6824
|
172 |
+
- I-product Precision Micro: 0.1186
|
173 |
+
- B-time F1 Micro: 0.6538
|
174 |
+
- B-time Recall Micro: 0.6296
|
175 |
+
- B-time Precision Micro: 0.68
|
176 |
+
- I-time F1 Micro: 0.6118
|
177 |
+
- I-time Recall Micro: 0.9811
|
178 |
+
- I-time Precision Micro: 0.4444
|
179 |
+
- I-commodity F1 Micro: 0.0444
|
180 |
+
- I-commodity Recall Micro: 0.1667
|
181 |
+
- I-commodity Precision Micro: 0.0256
|
182 |
+
- B-application F1 Micro: 0.0
|
183 |
+
- B-application Recall Micro: 0.0
|
184 |
+
- B-application Precision Micro: 0.0
|
185 |
+
- I-application F1 Micro: 0.0
|
186 |
+
- I-application Recall Micro: 0.0
|
187 |
+
- I-application Precision Micro: 0.0
|
188 |
+
- I-country F1 Micro: 0.1695
|
189 |
+
- I-country Recall Micro: 0.7895
|
190 |
+
- I-country Precision Micro: 0.0949
|
191 |
+
- B-award F1 Micro: 0.5455
|
192 |
+
- B-award Recall Micro: 0.4615
|
193 |
+
- B-award Precision Micro: 0.6667
|
194 |
+
- I-award F1 Micro: 0.4459
|
195 |
+
- I-award Recall Micro: 0.8049
|
196 |
+
- I-award Precision Micro: 0.3084
|
197 |
+
- I-gpe F1 Micro: 0.3284
|
198 |
+
- I-gpe Recall Micro: 0.9167
|
199 |
+
- I-gpe Precision Micro: 0.2
|
200 |
+
- B-location F1 Micro: 0.4885
|
201 |
+
- B-location Recall Micro: 0.5161
|
202 |
+
- B-location Precision Micro: 0.4638
|
203 |
+
- I-location F1 Micro: 0.3189
|
204 |
+
- I-location Recall Micro: 0.6316
|
205 |
+
- I-location Precision Micro: 0.2133
|
206 |
+
- I-ordinal F1 Micro: 0.5
|
207 |
+
- I-ordinal Recall Micro: 0.4
|
208 |
+
- I-ordinal Precision Micro: 0.6667
|
209 |
+
- I-trade Agreement F1 Micro: 0.1163
|
210 |
+
- I-trade Agreement Recall Micro: 0.3846
|
211 |
+
- I-trade Agreement Precision Micro: 0.0685
|
212 |
+
- B-religion F1 Micro: 0.0
|
213 |
+
- B-religion Recall Micro: 0.0
|
214 |
+
- B-religion Precision Micro: 0.0
|
215 |
+
- I-age F1 Micro: 0.4324
|
216 |
+
- I-age Recall Micro: 0.5714
|
217 |
+
- I-age Precision Micro: 0.3478
|
218 |
+
- B-investment Program F1 Micro: 0.0
|
219 |
+
- B-investment Program Recall Micro: 0.0
|
220 |
+
- B-investment Program Precision Micro: 0.0
|
221 |
+
- I-investment Program F1 Micro: 0.0
|
222 |
+
- I-investment Program Recall Micro: 0.0
|
223 |
+
- I-investment Program Precision Micro: 0.0
|
224 |
+
- B-borough F1 Micro: 0.7059
|
225 |
+
- B-borough Recall Micro: 0.6667
|
226 |
+
- B-borough Precision Micro: 0.75
|
227 |
+
- B-price F1 Micro: 0.0
|
228 |
+
- B-price Recall Micro: 0.0
|
229 |
+
- B-price Precision Micro: 0.0
|
230 |
+
- I-price F1 Micro: 0.0
|
231 |
+
- I-price Recall Micro: 0.0
|
232 |
+
- I-price Precision Micro: 0.0
|
233 |
+
- B-character F1 Micro: 0.0
|
234 |
+
- B-character Recall Micro: 0.0
|
235 |
+
- B-character Precision Micro: 0.0
|
236 |
+
- I-character F1 Micro: 0.0
|
237 |
+
- I-character Recall Micro: 0.0
|
238 |
+
- I-character Precision Micro: 0.0
|
239 |
+
- B-website F1 Micro: 0.0
|
240 |
+
- B-website Recall Micro: 0.0
|
241 |
+
- B-website Precision Micro: 0.0
|
242 |
+
- B-street F1 Micro: 0.4000
|
243 |
+
- B-street Recall Micro: 0.4286
|
244 |
+
- B-street Precision Micro: 0.375
|
245 |
+
- I-street F1 Micro: 0.3256
|
246 |
+
- I-street Recall Micro: 1.0
|
247 |
+
- I-street Precision Micro: 0.1944
|
248 |
+
- B-village F1 Micro: 0.6667
|
249 |
+
- B-village Recall Micro: 0.7
|
250 |
+
- B-village Precision Micro: 0.6364
|
251 |
+
- I-village F1 Micro: 0.2222
|
252 |
+
- I-village Recall Micro: 0.875
|
253 |
+
- I-village Precision Micro: 0.1273
|
254 |
+
- B-disease F1 Micro: 0.5965
|
255 |
+
- B-disease Recall Micro: 0.7083
|
256 |
+
- B-disease Precision Micro: 0.5152
|
257 |
+
- I-disease F1 Micro: 0.3704
|
258 |
+
- I-disease Recall Micro: 0.7812
|
259 |
+
- I-disease Precision Micro: 0.2427
|
260 |
+
- B-penalty F1 Micro: 0.1579
|
261 |
+
- B-penalty Recall Micro: 0.1579
|
262 |
+
- B-penalty Precision Micro: 0.1579
|
263 |
+
- I-penalty F1 Micro: 0.1674
|
264 |
+
- I-penalty Recall Micro: 0.3175
|
265 |
+
- I-penalty Precision Micro: 0.1136
|
266 |
+
- B-weapon F1 Micro: 0.6715
|
267 |
+
- B-weapon Recall Micro: 0.7302
|
268 |
+
- B-weapon Precision Micro: 0.6216
|
269 |
+
- I-weapon F1 Micro: 0.2455
|
270 |
+
- I-weapon Recall Micro: 0.5965
|
271 |
+
- I-weapon Precision Micro: 0.1545
|
272 |
+
- I-borough F1 Micro: 0.4091
|
273 |
+
- I-borough Recall Micro: 0.6923
|
274 |
+
- I-borough Precision Micro: 0.2903
|
275 |
+
- B-vehicle F1 Micro: 0.6349
|
276 |
+
- B-vehicle Recall Micro: 0.5882
|
277 |
+
- B-vehicle Precision Micro: 0.6897
|
278 |
+
- I-vehicle F1 Micro: 0.4174
|
279 |
+
- I-vehicle Recall Micro: 0.7273
|
280 |
+
- I-vehicle Precision Micro: 0.2927
|
281 |
+
- B-language F1 Micro: 0.0
|
282 |
+
- B-language Recall Micro: 0.0
|
283 |
+
- B-language Precision Micro: 0.0
|
284 |
+
- I-language F1 Micro: 0.0
|
285 |
+
- I-language Recall Micro: 0.0
|
286 |
+
- I-language Precision Micro: 0.0
|
287 |
+
- B-house F1 Micro: 0.0
|
288 |
+
- B-house Recall Micro: 0.0
|
289 |
+
- B-house Precision Micro: 0.0
|
290 |
+
- I-norp F1 Micro: 0.0
|
291 |
+
- I-norp Recall Micro: 0.0
|
292 |
+
- I-norp Precision Micro: 0.0
|
293 |
+
- I-house F1 Micro: 0.0
|
294 |
+
- I-house Recall Micro: 0.0
|
295 |
+
- I-house Precision Micro: 0.0
|
296 |
+
- I-website F1 Micro: 0.0
|
297 |
+
- I-website Recall Micro: 0.0
|
298 |
+
- I-website Precision Micro: 0.0
|
299 |
+
- F1 Macro: 0.3969
|
300 |
+
- Recall Macro: 0.5603
|
301 |
+
- Precision Macro: 0.3447
|
302 |
+
|
303 |
+
## Model description
|
304 |
+
|
305 |
+
More information needed
|
306 |
+
|
307 |
+
## Intended uses & limitations
|
308 |
+
|
309 |
+
More information needed
|
310 |
+
|
311 |
+
## Training and evaluation data
|
312 |
+
|
313 |
+
More information needed
|
314 |
+
|
315 |
+
## Training procedure
|
316 |
+
|
317 |
+
### Training hyperparameters
|
318 |
+
|
319 |
+
The following hyperparameters were used during training:
|
320 |
+
- learning_rate: 1e-05
|
321 |
+
- train_batch_size: 4
|
322 |
+
- eval_batch_size: 4
|
323 |
+
- seed: 42
|
324 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
325 |
+
- lr_scheduler_type: linear
|
326 |
+
- num_epochs: 10000
|
327 |
+
- mixed_precision_training: Native AMP
|
328 |
+
|
329 |
+
### Training results
|
330 |
+
|
331 |
+
| Training Loss | Epoch | Step | Validation Loss | F1 Micro | O F1 Micro | O Recall Micro | O Precision Micro | B-person F1 Micro | B-person Recall Micro | B-person Precision Micro | B-norp F1 Micro | B-norp Recall Micro | B-norp Precision Micro | B-commodity F1 Micro | B-commodity Recall Micro | B-commodity Precision Micro | B-date F1 Micro | B-date Recall Micro | B-date Precision Micro | I-date F1 Micro | I-date Recall Micro | I-date Precision Micro | B-country F1 Micro | B-country Recall Micro | B-country Precision Micro | B-economic Sector F1 Micro | B-economic Sector Recall Micro | B-economic Sector Precision Micro | I-economic Sector F1 Micro | I-economic Sector Recall Micro | I-economic Sector Precision Micro | B-news Source F1 Micro | B-news Source Recall Micro | B-news Source Precision Micro | B-profession F1 Micro | B-profession Recall Micro | B-profession Precision Micro | I-news Source F1 Micro | I-news Source Recall Micro | I-news Source Precision Micro | I-person F1 Micro | I-person Recall Micro | I-person Precision Micro | B-organization F1 Micro | B-organization Recall Micro | B-organization Precision Micro | I-profession F1 Micro | I-profession Recall Micro | I-profession Precision Micro | B-event F1 Micro | B-event Recall Micro | B-event Precision Micro | B-city F1 Micro | B-city Recall Micro | B-city Precision Micro | B-gpe F1 Micro | B-gpe Recall Micro | B-gpe Precision Micro | I-event F1 Micro | I-event Recall Micro | I-event Precision Micro | B-group F1 Micro | B-group Recall Micro | B-group Precision Micro | B-ordinal F1 Micro | B-ordinal Recall Micro | B-ordinal Precision Micro | B-product F1 Micro | B-product Recall Micro | B-product Precision Micro | I-organization F1 Micro | I-organization Recall Micro | I-organization Precision Micro | B-money F1 Micro | B-money Recall Micro | B-money Precision Micro | I-money F1 Micro | I-money Recall Micro | I-money Precision Micro | B-currency F1 Micro | B-currency Recall Micro | B-currency Precision Micro | B-percent F1 Micro | B-percent Recall Micro | B-percent Precision Micro | I-percent F1 Micro | I-percent Recall Micro | I-percent Precision Micro | I-group F1 Micro | I-group Recall Micro | I-group Precision Micro | B-cardinal F1 Micro | B-cardinal Recall Micro | B-cardinal Precision Micro | B-law F1 Micro | B-law Recall Micro | B-law Precision Micro | I-law F1 Micro | I-law Recall Micro | I-law Precision Micro | B-fac F1 Micro | B-fac Recall Micro | B-fac Precision Micro | I-fac F1 Micro | I-fac Recall Micro | I-fac Precision Micro | B-age F1 Micro | B-age Recall Micro | B-age Precision Micro | I-city F1 Micro | I-city Recall Micro | I-city Precision Micro | B-work Of Art F1 Micro | B-work Of Art Recall Micro | B-work Of Art Precision Micro | I-work Of Art F1 Micro | I-work Of Art Recall Micro | I-work Of Art Precision Micro | B-region F1 Micro | B-region Recall Micro | B-region Precision Micro | I-region F1 Micro | I-region Recall Micro | I-region Precision Micro | I-cardinal F1 Micro | I-cardinal Recall Micro | I-cardinal Precision Micro | I-currency F1 Micro | I-currency Recall Micro | I-currency Precision Micro | B-quantity F1 Micro | B-quantity Recall Micro | B-quantity Precision Micro | I-quantity F1 Micro | I-quantity Recall Micro | I-quantity Precision Micro | B-crime F1 Micro | B-crime Recall Micro | B-crime Precision Micro | I-crime F1 Micro | I-crime Recall Micro | I-crime Precision Micro | B-trade Agreement F1 Micro | B-trade Agreement Recall Micro | B-trade Agreement Precision Micro | B-nationality F1 Micro | B-nationality Recall Micro | B-nationality Precision Micro | B-family F1 Micro | B-family Recall Micro | B-family Precision Micro | I-family F1 Micro | I-family Recall Micro | I-family Precision Micro | I-product F1 Micro | I-product Recall Micro | I-product Precision Micro | B-time F1 Micro | B-time Recall Micro | B-time Precision Micro | I-time F1 Micro | I-time Recall Micro | I-time Precision Micro | I-commodity F1 Micro | I-commodity Recall Micro | I-commodity Precision Micro | B-application F1 Micro | B-application Recall Micro | B-application Precision Micro | I-application F1 Micro | I-application Recall Micro | I-application Precision Micro | I-country F1 Micro | I-country Recall Micro | I-country Precision Micro | B-award F1 Micro | B-award Recall Micro | B-award Precision Micro | I-award F1 Micro | I-award Recall Micro | I-award Precision Micro | I-gpe F1 Micro | I-gpe Recall Micro | I-gpe Precision Micro | B-location F1 Micro | B-location Recall Micro | B-location Precision Micro | I-location F1 Micro | I-location Recall Micro | I-location Precision Micro | I-ordinal F1 Micro | I-ordinal Recall Micro | I-ordinal Precision Micro | I-trade Agreement F1 Micro | I-trade Agreement Recall Micro | I-trade Agreement Precision Micro | B-religion F1 Micro | B-religion Recall Micro | B-religion Precision Micro | I-age F1 Micro | I-age Recall Micro | I-age Precision Micro | B-investment Program F1 Micro | B-investment Program Recall Micro | B-investment Program Precision Micro | I-investment Program F1 Micro | I-investment Program Recall Micro | I-investment Program Precision Micro | B-borough F1 Micro | B-borough Recall Micro | B-borough Precision Micro | B-price F1 Micro | B-price Recall Micro | B-price Precision Micro | I-price F1 Micro | I-price Recall Micro | I-price Precision Micro | B-character F1 Micro | B-character Recall Micro | B-character Precision Micro | I-character F1 Micro | I-character Recall Micro | I-character Precision Micro | B-website F1 Micro | B-website Recall Micro | B-website Precision Micro | B-street F1 Micro | B-street Recall Micro | B-street Precision Micro | I-street F1 Micro | I-street Recall Micro | I-street Precision Micro | B-village F1 Micro | B-village Recall Micro | B-village Precision Micro | I-village F1 Micro | I-village Recall Micro | I-village Precision Micro | B-disease F1 Micro | B-disease Recall Micro | B-disease Precision Micro | I-disease F1 Micro | I-disease Recall Micro | I-disease Precision Micro | B-penalty F1 Micro | B-penalty Recall Micro | B-penalty Precision Micro | I-penalty F1 Micro | I-penalty Recall Micro | I-penalty Precision Micro | B-weapon F1 Micro | B-weapon Recall Micro | B-weapon Precision Micro | I-weapon F1 Micro | I-weapon Recall Micro | I-weapon Precision Micro | I-borough F1 Micro | I-borough Recall Micro | I-borough Precision Micro | B-vehicle F1 Micro | B-vehicle Recall Micro | B-vehicle Precision Micro | I-vehicle F1 Micro | I-vehicle Recall Micro | I-vehicle Precision Micro | B-language F1 Micro | B-language Recall Micro | B-language Precision Micro | I-language F1 Micro | I-language Recall Micro | I-language Precision Micro | B-house F1 Micro | B-house Recall Micro | B-house Precision Micro | I-norp F1 Micro | I-norp Recall Micro | I-norp Precision Micro | I-house F1 Micro | I-house Recall Micro | I-house Precision Micro | I-website F1 Micro | I-website Recall Micro | I-website Precision Micro | F1 Macro | Recall Macro | Precision Macro |
|
332 |
+
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:----------:|:--------------:|:-----------------:|:-----------------:|:---------------------:|:------------------------:|:---------------:|:-------------------:|:----------------------:|:--------------------:|:------------------------:|:---------------------------:|:---------------:|:-------------------:|:----------------------:|:---------------:|:-------------------:|:----------------------:|:------------------:|:----------------------:|:-------------------------:|:--------------------------:|:------------------------------:|:---------------------------------:|:--------------------------:|:------------------------------:|:---------------------------------:|:----------------------:|:--------------------------:|:-----------------------------:|:---------------------:|:-------------------------:|:----------------------------:|:----------------------:|:--------------------------:|:-----------------------------:|:-----------------:|:---------------------:|:------------------------:|:-----------------------:|:---------------------------:|:------------------------------:|:---------------------:|:-------------------------:|:----------------------------:|:----------------:|:--------------------:|:-----------------------:|:---------------:|:-------------------:|:----------------------:|:--------------:|:------------------:|:---------------------:|:----------------:|:--------------------:|:-----------------------:|:----------------:|:--------------------:|:-----------------------:|:------------------:|:----------------------:|:-------------------------:|:------------------:|:----------------------:|:-------------------------:|:-----------------------:|:---------------------------:|:------------------------------:|:----------------:|:--------------------:|:-----------------------:|:----------------:|:--------------------:|:-----------------------:|:-------------------:|:-----------------------:|:--------------------------:|:------------------:|:----------------------:|:-------------------------:|:------------------:|:----------------------:|:-------------------------:|:----------------:|:--------------------:|:-----------------------:|:-------------------:|:-----------------------:|:--------------------------:|:--------------:|:------------------:|:---------------------:|:--------------:|:------------------:|:---------------------:|:--------------:|:------------------:|:---------------------:|:--------------:|:------------------:|:---------------------:|:--------------:|:------------------:|:---------------------:|:---------------:|:-------------------:|:----------------------:|:----------------------:|:--------------------------:|:-----------------------------:|:----------------------:|:--------------------------:|:-----------------------------:|:-----------------:|:---------------------:|:------------------------:|:-----------------:|:---------------------:|:------------------------:|:-------------------:|:-----------------------:|:--------------------------:|:-------------------:|:-----------------------:|:--------------------------:|:-------------------:|:-----------------------:|:--------------------------:|:-------------------:|:-----------------------:|:--------------------------:|:----------------:|:--------------------:|:-----------------------:|:----------------:|:--------------------:|:-----------------------:|:--------------------------:|:------------------------------:|:---------------------------------:|:----------------------:|:--------------------------:|:-----------------------------:|:-----------------:|:---------------------:|:------------------------:|:-----------------:|:---------------------:|:------------------------:|:------------------:|:----------------------:|:-------------------------:|:---------------:|:-------------------:|:----------------------:|:---------------:|:-------------------:|:----------------------:|:--------------------:|:------------------------:|:---------------------------:|:----------------------:|:--------------------------:|:-----------------------------:|:----------------------:|:--------------------------:|:-----------------------------:|:------------------:|:----------------------:|:-------------------------:|:----------------:|:--------------------:|:-----------------------:|:----------------:|:--------------------:|:-----------------------:|:--------------:|:------------------:|:---------------------:|:-------------------:|:-----------------------:|:--------------------------:|:-------------------:|:-----------------------:|:--------------------------:|:------------------:|:----------------------:|:-------------------------:|:--------------------------:|:------------------------------:|:---------------------------------:|:-------------------:|:-----------------------:|:--------------------------:|:--------------:|:------------------:|:---------------------:|:-----------------------------:|:---------------------------------:|:------------------------------------:|:-----------------------------:|:---------------------------------:|:------------------------------------:|:------------------:|:----------------------:|:-------------------------:|:----------------:|:--------------------:|:-----------------------:|:----------------:|:--------------------:|:-----------------------:|:--------------------:|:------------------------:|:---------------------------:|:--------------------:|:------------------------:|:---------------------------:|:------------------:|:----------------------:|:-------------------------:|:-----------------:|:---------------------:|:------------------------:|:-----------------:|:---------------------:|:------------------------:|:------------------:|:----------------------:|:-------------------------:|:------------------:|:----------------------:|:-------------------------:|:------------------:|:----------------------:|:-------------------------:|:------------------:|:----------------------:|:-------------------------:|:------------------:|:----------------------:|:-------------------------:|:------------------:|:----------------------:|:-------------------------:|:-----------------:|:---------------------:|:------------------------:|:-----------------:|:---------------------:|:------------------------:|:------------------:|:----------------------:|:-------------------------:|:------------------:|:----------------------:|:-------------------------:|:------------------:|:----------------------:|:-------------------------:|:-------------------:|:-----------------------:|:--------------------------:|:-------------------:|:-----------------------:|:--------------------------:|:----------------:|:--------------------:|:-----------------------:|:---------------:|:-------------------:|:----------------------:|:----------------:|:--------------------:|:-----------------------:|:------------------:|:----------------------:|:-------------------------:|:--------:|:------------:|:---------------:|
|
333 |
+
| 0.0033 | 1.0 | 3014 | 0.0092 | 0.5876 | 0.6385 | 0.9365 | 0.4844 | 0.9705 | 0.9816 | 0.9596 | 0.6118 | 0.8667 | 0.4727 | 0.7873 | 0.9394 | 0.6776 | 0.8436 | 0.8571 | 0.8304 | 0.6416 | 0.9669 | 0.4801 | 0.6229 | 0.9831 | 0.4559 | 0.6024 | 0.6410 | 0.5682 | 0.2491 | 0.5965 | 0.1574 | 0.7954 | 0.8306 | 0.7630 | 0.8659 | 0.9184 | 0.8191 | 0.4757 | 0.8461 | 0.3309 | 0.3331 | 0.996 | 0.2 | 0.8277 | 0.9038 | 0.7633 | 0.2675 | 0.7652 | 0.1621 | 0.5617 | 0.5291 | 0.5987 | 0.7347 | 0.8630 | 0.6396 | 0.6989 | 0.9535 | 0.5516 | 0.2461 | 0.3922 | 0.1793 | 0.7073 | 0.7143 | 0.7004 | 0.592 | 0.7708 | 0.4805 | 0.7213 | 0.8049 | 0.6535 | 0.3127 | 0.8040 | 0.1941 | 0.88 | 0.9098 | 0.8521 | 0.6312 | 0.9502 | 0.4726 | 0.7622 | 0.9658 | 0.6295 | 0.8824 | 0.9146 | 0.8523 | 0.6952 | 1.0 | 0.5328 | 0.1762 | 0.4426 | 0.1100 | 0.6688 | 0.6604 | 0.6774 | 0.3846 | 0.3571 | 0.4167 | 0.2473 | 0.3617 | 0.1878 | 0.7348 | 0.7253 | 0.7445 | 0.3085 | 0.6977 | 0.1980 | 0.8333 | 0.7143 | 1.0 | 0.1010 | 0.7143 | 0.0543 | 0.3333 | 0.25 | 0.5 | 0.4242 | 0.4375 | 0.4118 | 0.7729 | 0.8151 | 0.7348 | 0.2865 | 0.8033 | 0.1744 | 0.4196 | 0.5085 | 0.3571 | 0.0 | 0.0 | 0.0 | 0.7177 | 0.7479 | 0.6899 | 0.4931 | 0.7933 | 0.3577 | 0.3789 | 0.4286 | 0.3396 | 0.3341 | 0.6574 | 0.2240 | 0.6415 | 0.6296 | 0.6538 | 0.0 | 0.0 | 0.0 | 0.4737 | 1.0 | 0.3103 | 0.0 | 0.0 | 0.0 | 0.2270 | 0.5647 | 0.1420 | 0.6667 | 0.6667 | 0.6667 | 0.5854 | 0.9057 | 0.4324 | 0.0741 | 0.1667 | 0.0476 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1867 | 0.7368 | 0.1069 | 0.4444 | 0.3077 | 0.8 | 0.4706 | 0.7805 | 0.3368 | 0.2619 | 0.9167 | 0.1528 | 0.4878 | 0.4839 | 0.4918 | 0.2997 | 0.6053 | 0.1991 | 0.25 | 0.2 | 0.3333 | 0.1154 | 0.2308 | 0.0769 | 0.0 | 0.0 | 0.0 | 0.3750 | 0.6429 | 0.2647 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6667 | 0.6667 | 0.6667 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.5 | 0.5714 | 0.4444 | 0.3333 | 1.0 | 0.2 | 0.6222 | 0.7 | 0.56 | 0.2424 | 1.0 | 0.1379 | 0.5778 | 0.5417 | 0.6190 | 0.3425 | 0.7812 | 0.2193 | 0.1212 | 0.1053 | 0.1429 | 0.1847 | 0.3651 | 0.1237 | 0.7015 | 0.7460 | 0.6620 | 0.2256 | 0.5263 | 0.1435 | 0.4045 | 0.6923 | 0.2857 | 0.7143 | 0.7353 | 0.6944 | 0.3826 | 0.6667 | 0.2683 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3969 | 0.5513 | 0.3515 |
|
334 |
+
| 0.0032 | 2.0 | 6028 | 0.0096 | 0.5837 | 0.6370 | 0.9242 | 0.4860 | 0.9639 | 0.9816 | 0.9468 | 0.6190 | 0.8667 | 0.4815 | 0.7553 | 0.9470 | 0.6281 | 0.8386 | 0.8471 | 0.8304 | 0.6419 | 0.9492 | 0.4849 | 0.6152 | 0.9765 | 0.4490 | 0.5576 | 0.5897 | 0.5287 | 0.2517 | 0.6667 | 0.1551 | 0.7988 | 0.8327 | 0.7677 | 0.8088 | 0.9464 | 0.7061 | 0.4808 | 0.8400 | 0.3368 | 0.3381 | 0.996 | 0.2036 | 0.8350 | 0.8993 | 0.7794 | 0.2462 | 0.8030 | 0.1454 | 0.5658 | 0.5436 | 0.5899 | 0.625 | 0.8904 | 0.4815 | 0.6760 | 0.9380 | 0.5284 | 0.2577 | 0.3776 | 0.1956 | 0.6667 | 0.75 | 0.6 | 0.5306 | 0.8125 | 0.3939 | 0.6683 | 0.8232 | 0.5625 | 0.3128 | 0.8425 | 0.1921 | 0.8530 | 0.8947 | 0.8151 | 0.6259 | 0.9644 | 0.4632 | 0.7441 | 0.9658 | 0.6052 | 0.8639 | 0.8902 | 0.8391 | 0.6995 | 0.9846 | 0.5424 | 0.1844 | 0.4836 | 0.1139 | 0.6903 | 0.7358 | 0.65 | 0.3704 | 0.3571 | 0.3846 | 0.3246 | 0.3936 | 0.2761 | 0.6910 | 0.6910 | 0.6910 | 0.3007 | 0.7151 | 0.1904 | 0.8649 | 0.7619 | 1.0 | 0.1047 | 0.6429 | 0.0570 | 0.3158 | 0.375 | 0.2727 | 0.3721 | 0.5 | 0.2963 | 0.8070 | 0.7731 | 0.8440 | 0.2817 | 0.8197 | 0.1701 | 0.3851 | 0.4831 | 0.3202 | 0.0 | 0.0 | 0.0 | 0.7311 | 0.7311 | 0.7311 | 0.4889 | 0.7989 | 0.3522 | 0.3736 | 0.4048 | 0.3469 | 0.3245 | 0.5648 | 0.2276 | 0.7170 | 0.7037 | 0.7308 | 0.0 | 0.0 | 0.0 | 0.5 | 0.8889 | 0.3478 | 0.0 | 0.0 | 0.0 | 0.2021 | 0.6824 | 0.1186 | 0.6538 | 0.6296 | 0.68 | 0.6118 | 0.9811 | 0.4444 | 0.0444 | 0.1667 | 0.0256 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1695 | 0.7895 | 0.0949 | 0.5455 | 0.4615 | 0.6667 | 0.4459 | 0.8049 | 0.3084 | 0.3284 | 0.9167 | 0.2 | 0.4885 | 0.5161 | 0.4638 | 0.3189 | 0.6316 | 0.2133 | 0.5 | 0.4 | 0.6667 | 0.1163 | 0.3846 | 0.0685 | 0.0 | 0.0 | 0.0 | 0.4324 | 0.5714 | 0.3478 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7059 | 0.6667 | 0.75 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4000 | 0.4286 | 0.375 | 0.3256 | 1.0 | 0.1944 | 0.6667 | 0.7 | 0.6364 | 0.2222 | 0.875 | 0.1273 | 0.5965 | 0.7083 | 0.5152 | 0.3704 | 0.7812 | 0.2427 | 0.1579 | 0.1579 | 0.1579 | 0.1674 | 0.3175 | 0.1136 | 0.6715 | 0.7302 | 0.6216 | 0.2455 | 0.5965 | 0.1545 | 0.4091 | 0.6923 | 0.2903 | 0.6349 | 0.5882 | 0.6897 | 0.4174 | 0.7273 | 0.2927 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3969 | 0.5603 | 0.3447 |
|
335 |
+
| 0.0029 | 3.0 | 9042 | 0.0102 | 0.5857 | 0.6369 | 0.9367 | 0.4824 | 0.9555 | 0.9862 | 0.9266 | 0.5909 | 0.8667 | 0.4483 | 0.7590 | 0.9545 | 0.63 | 0.8374 | 0.8551 | 0.8205 | 0.6347 | 0.9752 | 0.4704 | 0.6097 | 0.9817 | 0.4422 | 0.6286 | 0.7051 | 0.5670 | 0.2581 | 0.6316 | 0.1622 | 0.7871 | 0.8347 | 0.7446 | 0.8664 | 0.9371 | 0.8056 | 0.4789 | 0.8564 | 0.3324 | 0.3383 | 0.996 | 0.2038 | 0.8071 | 0.8929 | 0.7364 | 0.2440 | 0.8106 | 0.1436 | 0.5397 | 0.4738 | 0.6269 | 0.7014 | 0.8767 | 0.5845 | 0.6503 | 0.9225 | 0.5021 | 0.2354 | 0.3306 | 0.1828 | 0.6799 | 0.75 | 0.6217 | 0.592 | 0.7708 | 0.4805 | 0.7163 | 0.7622 | 0.6757 | 0.3133 | 0.8077 | 0.1944 | 0.8278 | 0.8496 | 0.8071 | 0.6187 | 0.9644 | 0.4555 | 0.7749 | 0.9315 | 0.6634 | 0.8606 | 0.8659 | 0.8554 | 0.688 | 0.9923 | 0.5265 | 0.1872 | 0.4918 | 0.1156 | 0.6826 | 0.7170 | 0.6514 | 0.4286 | 0.4286 | 0.4286 | 0.2900 | 0.4149 | 0.2229 | 0.7124 | 0.6910 | 0.7352 | 0.3132 | 0.7093 | 0.2010 | 0.8649 | 0.7619 | 1.0 | 0.0988 | 0.5714 | 0.0541 | 0.1429 | 0.125 | 0.1667 | 0.3889 | 0.4375 | 0.35 | 0.7317 | 0.7563 | 0.7087 | 0.2889 | 0.8525 | 0.1739 | 0.4224 | 0.5763 | 0.3333 | 0.0 | 0.0 | 0.0 | 0.7265 | 0.7143 | 0.7391 | 0.4936 | 0.7598 | 0.3656 | 0.3564 | 0.4286 | 0.3051 | 0.2857 | 0.6944 | 0.1799 | 0.6471 | 0.8148 | 0.5366 | 0.0 | 0.0 | 0.0 | 0.5455 | 1.0 | 0.375 | 0.0 | 0.0 | 0.0 | 0.2392 | 0.5529 | 0.1526 | 0.6415 | 0.6296 | 0.6538 | 0.6 | 0.9057 | 0.4486 | 0.1176 | 0.6667 | 0.0645 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1436 | 0.7368 | 0.0795 | 0.4286 | 0.4615 | 0.4 | 0.4595 | 0.8293 | 0.3178 | 0.3548 | 0.9167 | 0.22 | 0.5197 | 0.5323 | 0.5077 | 0.3300 | 0.6447 | 0.2217 | 0.4444 | 0.4 | 0.5 | 0.0870 | 0.2308 | 0.0536 | 0.0 | 0.0 | 0.0 | 0.3902 | 0.5714 | 0.2963 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.6471 | 0.6111 | 0.6875 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4000 | 0.4286 | 0.375 | 0.3256 | 1.0 | 0.1944 | 0.6829 | 0.7 | 0.6667 | 0.2258 | 0.875 | 0.1296 | 0.4928 | 0.7083 | 0.3778 | 0.3521 | 0.7812 | 0.2273 | 0.15 | 0.1579 | 0.1429 | 0.2128 | 0.3175 | 0.16 | 0.7059 | 0.7619 | 0.6575 | 0.2581 | 0.7018 | 0.1581 | 0.3956 | 0.6923 | 0.2769 | 0.7143 | 0.7353 | 0.6944 | 0.4915 | 0.8788 | 0.3412 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3958 | 0.5647 | 0.3398 |
|
336 |
+
| 0.0026 | 4.0 | 12056 | 0.0105 | 0.5820 | 0.6363 | 0.9236 | 0.4854 | 0.9661 | 0.9839 | 0.9490 | 0.6118 | 0.8667 | 0.4727 | 0.7568 | 0.9545 | 0.6269 | 0.8481 | 0.8370 | 0.8595 | 0.6525 | 0.9587 | 0.4945 | 0.6156 | 0.9844 | 0.4478 | 0.6125 | 0.6282 | 0.5976 | 0.2618 | 0.6316 | 0.1651 | 0.8011 | 0.8448 | 0.7618 | 0.8447 | 0.9254 | 0.7769 | 0.4769 | 0.8303 | 0.3346 | 0.3379 | 0.996 | 0.2034 | 0.8171 | 0.8938 | 0.7525 | 0.2480 | 0.8182 | 0.1461 | 0.5205 | 0.5174 | 0.5235 | 0.6432 | 0.8767 | 0.5079 | 0.6821 | 0.9147 | 0.5438 | 0.2270 | 0.4441 | 0.1525 | 0.6405 | 0.7460 | 0.5612 | 0.6016 | 0.7708 | 0.4933 | 0.7299 | 0.7744 | 0.6902 | 0.3177 | 0.8059 | 0.1978 | 0.8699 | 0.8797 | 0.8603 | 0.6308 | 0.9395 | 0.4748 | 0.7637 | 0.9521 | 0.6376 | 0.8571 | 0.8780 | 0.8372 | 0.688 | 0.9923 | 0.5265 | 0.1887 | 0.4918 | 0.1167 | 0.6879 | 0.7484 | 0.6364 | 0.3333 | 0.3571 | 0.3125 | 0.2439 | 0.3723 | 0.1813 | 0.6925 | 0.6910 | 0.6940 | 0.3186 | 0.7326 | 0.2036 | 0.8333 | 0.7143 | 1.0 | 0.1046 | 0.5714 | 0.0576 | 0.2857 | 0.25 | 0.3333 | 0.3333 | 0.4375 | 0.2692 | 0.7583 | 0.7647 | 0.7521 | 0.2985 | 0.8197 | 0.1825 | 0.3416 | 0.4661 | 0.2696 | 0.0 | 0.0 | 0.0 | 0.7113 | 0.7143 | 0.7083 | 0.4965 | 0.7877 | 0.3625 | 0.3800 | 0.4524 | 0.3276 | 0.3125 | 0.6944 | 0.2016 | 0.6545 | 0.6667 | 0.6429 | 0.0 | 0.0 | 0.0 | 0.5143 | 1.0 | 0.3462 | 0.0 | 0.0 | 0.0 | 0.2338 | 0.5294 | 0.15 | 0.6429 | 0.6667 | 0.6207 | 0.5561 | 0.9811 | 0.3881 | 0.1481 | 0.6667 | 0.0833 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1172 | 0.7368 | 0.0636 | 0.4762 | 0.3846 | 0.625 | 0.4648 | 0.8049 | 0.3267 | 0.2299 | 0.8333 | 0.1333 | 0.4429 | 0.5 | 0.3974 | 0.3009 | 0.6711 | 0.1939 | 0.4444 | 0.4 | 0.5 | 0.0714 | 0.1538 | 0.0465 | 0.0 | 0.0 | 0.0 | 0.4118 | 0.5 | 0.35 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7568 | 0.7778 | 0.7368 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3077 | 0.2857 | 0.3333 | 0.3333 | 1.0 | 0.2 | 0.6667 | 0.75 | 0.6 | 0.2222 | 0.875 | 0.1273 | 0.5246 | 0.6667 | 0.4324 | 0.3145 | 0.7812 | 0.1969 | 0.1818 | 0.2105 | 0.16 | 0.1910 | 0.3016 | 0.1397 | 0.6341 | 0.8254 | 0.5149 | 0.2434 | 0.6491 | 0.1498 | 0.3925 | 0.8077 | 0.2593 | 0.7042 | 0.7353 | 0.6757 | 0.4265 | 0.8788 | 0.2816 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3908 | 0.5625 | 0.3356 |
|
337 |
+
| 0.0024 | 5.0 | 15070 | 0.0106 | 0.5861 | 0.6371 | 0.9416 | 0.4815 | 0.9805 | 0.9839 | 0.9772 | 0.5909 | 0.8667 | 0.4483 | 0.8039 | 0.9470 | 0.6983 | 0.7907 | 0.7827 | 0.7988 | 0.6354 | 0.9126 | 0.4874 | 0.6076 | 0.9791 | 0.4405 | 0.5590 | 0.5769 | 0.5422 | 0.2528 | 0.5965 | 0.1604 | 0.7992 | 0.8508 | 0.7536 | 0.8109 | 0.9347 | 0.7161 | 0.4823 | 0.8485 | 0.3369 | 0.3381 | 0.996 | 0.2036 | 0.8518 | 0.9103 | 0.8003 | 0.2566 | 0.8106 | 0.1524 | 0.5482 | 0.5203 | 0.5793 | 0.6995 | 0.8767 | 0.5818 | 0.6629 | 0.8992 | 0.5249 | 0.2411 | 0.3355 | 0.1882 | 0.6858 | 0.7103 | 0.6630 | 0.5455 | 0.8125 | 0.4105 | 0.6468 | 0.7927 | 0.5462 | 0.3140 | 0.8498 | 0.1926 | 0.8722 | 0.8722 | 0.8722 | 0.6272 | 0.9431 | 0.4699 | 0.7363 | 0.9658 | 0.5949 | 0.8690 | 0.8902 | 0.8488 | 0.6904 | 0.9692 | 0.5362 | 0.1986 | 0.4590 | 0.1267 | 0.7049 | 0.7736 | 0.6474 | 0.3125 | 0.3571 | 0.2778 | 0.2397 | 0.4043 | 0.1704 | 0.6680 | 0.6953 | 0.6429 | 0.3102 | 0.7267 | 0.1972 | 0.8649 | 0.7619 | 1.0 | 0.0859 | 0.5 | 0.0470 | 0.2667 | 0.25 | 0.2857 | 0.3333 | 0.4375 | 0.2692 | 0.7819 | 0.7983 | 0.7661 | 0.2779 | 0.8361 | 0.1667 | 0.4099 | 0.5593 | 0.3235 | 0.0 | 0.0 | 0.0 | 0.7378 | 0.6975 | 0.7830 | 0.4953 | 0.7318 | 0.3743 | 0.3191 | 0.3571 | 0.2885 | 0.3052 | 0.5185 | 0.2162 | 0.6667 | 0.8519 | 0.5476 | 0.0 | 0.0 | 0.0 | 0.5625 | 1.0 | 0.3913 | 0.0 | 0.0 | 0.0 | 0.25 | 0.5765 | 0.1596 | 0.5926 | 0.5926 | 0.5926 | 0.56 | 0.9245 | 0.4016 | 0.1067 | 0.6667 | 0.0580 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.1266 | 0.7895 | 0.0688 | 0.3478 | 0.3077 | 0.4 | 0.4828 | 0.6829 | 0.3733 | 0.2933 | 0.9167 | 0.1746 | 0.4885 | 0.5161 | 0.4638 | 0.3055 | 0.5526 | 0.2111 | 0.4615 | 0.6 | 0.375 | 0.1034 | 0.2308 | 0.0667 | 0.0 | 0.0 | 0.0 | 0.4091 | 0.6429 | 0.3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.7647 | 0.7222 | 0.8125 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.4000 | 0.4286 | 0.375 | 0.3333 | 1.0 | 0.2 | 0.6341 | 0.65 | 0.6190 | 0.2034 | 0.75 | 0.1176 | 0.3404 | 0.6667 | 0.2286 | 0.3356 | 0.7812 | 0.2137 | 0.2041 | 0.2632 | 0.1667 | 0.3077 | 0.4444 | 0.2353 | 0.6483 | 0.7460 | 0.5732 | 0.2628 | 0.6316 | 0.1659 | 0.4368 | 0.7308 | 0.3115 | 0.7385 | 0.7059 | 0.7742 | 0.448 | 0.8485 | 0.3043 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.3916 | 0.5600 | 0.3347 |
|
338 |
+
|
339 |
+
|
340 |
+
### Framework versions
|
341 |
+
|
342 |
+
- Transformers 4.35.0
|
343 |
+
- Pytorch 2.1.0+cu121
|
344 |
+
- Datasets 2.2.2
|
345 |
+
- Tokenizers 0.14.1
|
added_tokens.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"[MASK]": 250101
|
3 |
+
}
|
config.json
ADDED
@@ -0,0 +1,225 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "microsoft/mdeberta-v3-base",
|
3 |
+
"architectures": [
|
4 |
+
"DebertaV2ForTokenClassification"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"hidden_act": "gelu",
|
8 |
+
"hidden_dropout_prob": 0.1,
|
9 |
+
"hidden_size": 768,
|
10 |
+
"id2label": {
|
11 |
+
"0": "O",
|
12 |
+
"1": "B-PERSON",
|
13 |
+
"2": "B-NORP",
|
14 |
+
"3": "B-COMMODITY",
|
15 |
+
"4": "B-DATE",
|
16 |
+
"5": "I-DATE",
|
17 |
+
"6": "B-COUNTRY",
|
18 |
+
"7": "B-ECONOMIC_SECTOR",
|
19 |
+
"8": "I-ECONOMIC_SECTOR",
|
20 |
+
"9": "B-NEWS_SOURCE",
|
21 |
+
"10": "B-PROFESSION",
|
22 |
+
"11": "I-NEWS_SOURCE",
|
23 |
+
"12": "I-PERSON",
|
24 |
+
"13": "B-ORGANIZATION",
|
25 |
+
"14": "I-PROFESSION",
|
26 |
+
"15": "B-EVENT",
|
27 |
+
"16": "B-CITY",
|
28 |
+
"17": "B-GPE",
|
29 |
+
"18": "I-EVENT",
|
30 |
+
"19": "B-GROUP",
|
31 |
+
"20": "B-ORDINAL",
|
32 |
+
"21": "B-PRODUCT",
|
33 |
+
"22": "I-ORGANIZATION",
|
34 |
+
"23": "B-MONEY",
|
35 |
+
"24": "I-MONEY",
|
36 |
+
"25": "B-CURRENCY",
|
37 |
+
"26": "B-PERCENT",
|
38 |
+
"27": "I-PERCENT",
|
39 |
+
"28": "I-GROUP",
|
40 |
+
"29": "B-CARDINAL",
|
41 |
+
"30": "B-LAW",
|
42 |
+
"31": "I-LAW",
|
43 |
+
"32": "B-FAC",
|
44 |
+
"33": "I-FAC",
|
45 |
+
"34": "B-AGE",
|
46 |
+
"35": "I-CITY",
|
47 |
+
"36": "B-WORK_OF_ART",
|
48 |
+
"37": "I-WORK_OF_ART",
|
49 |
+
"38": "B-REGION",
|
50 |
+
"39": "I-REGION",
|
51 |
+
"40": "I-CARDINAL",
|
52 |
+
"41": "I-CURRENCY",
|
53 |
+
"42": "B-QUANTITY",
|
54 |
+
"43": "I-QUANTITY",
|
55 |
+
"44": "B-CRIME",
|
56 |
+
"45": "I-CRIME",
|
57 |
+
"46": "B-TRADE_AGREEMENT",
|
58 |
+
"47": "B-NATIONALITY",
|
59 |
+
"48": "B-FAMILY",
|
60 |
+
"49": "I-FAMILY",
|
61 |
+
"50": "I-PRODUCT",
|
62 |
+
"51": "B-TIME",
|
63 |
+
"52": "I-TIME",
|
64 |
+
"53": "I-COMMODITY",
|
65 |
+
"54": "B-APPLICATION",
|
66 |
+
"55": "I-APPLICATION",
|
67 |
+
"56": "I-COUNTRY",
|
68 |
+
"57": "B-AWARD",
|
69 |
+
"58": "I-AWARD",
|
70 |
+
"59": "I-GPE",
|
71 |
+
"60": "B-LOCATION",
|
72 |
+
"61": "I-LOCATION",
|
73 |
+
"62": "I-ORDINAL",
|
74 |
+
"63": "I-TRADE_AGREEMENT",
|
75 |
+
"64": "B-RELIGION",
|
76 |
+
"65": "I-AGE",
|
77 |
+
"66": "B-INVESTMENT_PROGRAM",
|
78 |
+
"67": "I-INVESTMENT_PROGRAM",
|
79 |
+
"68": "B-BOROUGH",
|
80 |
+
"69": "B-PRICE",
|
81 |
+
"70": "I-PRICE",
|
82 |
+
"71": "B-CHARACTER",
|
83 |
+
"72": "I-CHARACTER",
|
84 |
+
"73": "B-WEBSITE",
|
85 |
+
"74": "B-STREET",
|
86 |
+
"75": "I-STREET",
|
87 |
+
"76": "B-VILLAGE",
|
88 |
+
"77": "I-VILLAGE",
|
89 |
+
"78": "B-DISEASE",
|
90 |
+
"79": "I-DISEASE",
|
91 |
+
"80": "B-PENALTY",
|
92 |
+
"81": "I-PENALTY",
|
93 |
+
"82": "B-WEAPON",
|
94 |
+
"83": "I-WEAPON",
|
95 |
+
"84": "I-BOROUGH",
|
96 |
+
"85": "B-VEHICLE",
|
97 |
+
"86": "I-VEHICLE",
|
98 |
+
"87": "B-LANGUAGE",
|
99 |
+
"88": "I-LANGUAGE",
|
100 |
+
"89": "B-HOUSE",
|
101 |
+
"90": "I-NORP",
|
102 |
+
"91": "I-HOUSE",
|
103 |
+
"92": "I-WEBSITE"
|
104 |
+
},
|
105 |
+
"initializer_range": 0.02,
|
106 |
+
"intermediate_size": 3072,
|
107 |
+
"label2id": {
|
108 |
+
"B-AGE": 34,
|
109 |
+
"B-APPLICATION": 54,
|
110 |
+
"B-AWARD": 57,
|
111 |
+
"B-BOROUGH": 68,
|
112 |
+
"B-CARDINAL": 29,
|
113 |
+
"B-CHARACTER": 71,
|
114 |
+
"B-CITY": 16,
|
115 |
+
"B-COMMODITY": 3,
|
116 |
+
"B-COUNTRY": 6,
|
117 |
+
"B-CRIME": 44,
|
118 |
+
"B-CURRENCY": 25,
|
119 |
+
"B-DATE": 4,
|
120 |
+
"B-DISEASE": 78,
|
121 |
+
"B-ECONOMIC_SECTOR": 7,
|
122 |
+
"B-EVENT": 15,
|
123 |
+
"B-FAC": 32,
|
124 |
+
"B-FAMILY": 48,
|
125 |
+
"B-GPE": 17,
|
126 |
+
"B-GROUP": 19,
|
127 |
+
"B-HOUSE": 89,
|
128 |
+
"B-INVESTMENT_PROGRAM": 66,
|
129 |
+
"B-LANGUAGE": 87,
|
130 |
+
"B-LAW": 30,
|
131 |
+
"B-LOCATION": 60,
|
132 |
+
"B-MONEY": 23,
|
133 |
+
"B-NATIONALITY": 47,
|
134 |
+
"B-NEWS_SOURCE": 9,
|
135 |
+
"B-NORP": 2,
|
136 |
+
"B-ORDINAL": 20,
|
137 |
+
"B-ORGANIZATION": 13,
|
138 |
+
"B-PENALTY": 80,
|
139 |
+
"B-PERCENT": 26,
|
140 |
+
"B-PERSON": 1,
|
141 |
+
"B-PRICE": 69,
|
142 |
+
"B-PRODUCT": 21,
|
143 |
+
"B-PROFESSION": 10,
|
144 |
+
"B-QUANTITY": 42,
|
145 |
+
"B-REGION": 38,
|
146 |
+
"B-RELIGION": 64,
|
147 |
+
"B-STREET": 74,
|
148 |
+
"B-TIME": 51,
|
149 |
+
"B-TRADE_AGREEMENT": 46,
|
150 |
+
"B-VEHICLE": 85,
|
151 |
+
"B-VILLAGE": 76,
|
152 |
+
"B-WEAPON": 82,
|
153 |
+
"B-WEBSITE": 73,
|
154 |
+
"B-WORK_OF_ART": 36,
|
155 |
+
"I-AGE": 65,
|
156 |
+
"I-APPLICATION": 55,
|
157 |
+
"I-AWARD": 58,
|
158 |
+
"I-BOROUGH": 84,
|
159 |
+
"I-CARDINAL": 40,
|
160 |
+
"I-CHARACTER": 72,
|
161 |
+
"I-CITY": 35,
|
162 |
+
"I-COMMODITY": 53,
|
163 |
+
"I-COUNTRY": 56,
|
164 |
+
"I-CRIME": 45,
|
165 |
+
"I-CURRENCY": 41,
|
166 |
+
"I-DATE": 5,
|
167 |
+
"I-DISEASE": 79,
|
168 |
+
"I-ECONOMIC_SECTOR": 8,
|
169 |
+
"I-EVENT": 18,
|
170 |
+
"I-FAC": 33,
|
171 |
+
"I-FAMILY": 49,
|
172 |
+
"I-GPE": 59,
|
173 |
+
"I-GROUP": 28,
|
174 |
+
"I-HOUSE": 91,
|
175 |
+
"I-INVESTMENT_PROGRAM": 67,
|
176 |
+
"I-LANGUAGE": 88,
|
177 |
+
"I-LAW": 31,
|
178 |
+
"I-LOCATION": 61,
|
179 |
+
"I-MONEY": 24,
|
180 |
+
"I-NEWS_SOURCE": 11,
|
181 |
+
"I-NORP": 90,
|
182 |
+
"I-ORDINAL": 62,
|
183 |
+
"I-ORGANIZATION": 22,
|
184 |
+
"I-PENALTY": 81,
|
185 |
+
"I-PERCENT": 27,
|
186 |
+
"I-PERSON": 12,
|
187 |
+
"I-PRICE": 70,
|
188 |
+
"I-PRODUCT": 50,
|
189 |
+
"I-PROFESSION": 14,
|
190 |
+
"I-QUANTITY": 43,
|
191 |
+
"I-REGION": 39,
|
192 |
+
"I-STREET": 75,
|
193 |
+
"I-TIME": 52,
|
194 |
+
"I-TRADE_AGREEMENT": 63,
|
195 |
+
"I-VEHICLE": 86,
|
196 |
+
"I-VILLAGE": 77,
|
197 |
+
"I-WEAPON": 83,
|
198 |
+
"I-WEBSITE": 92,
|
199 |
+
"I-WORK_OF_ART": 37,
|
200 |
+
"O": 0
|
201 |
+
},
|
202 |
+
"layer_norm_eps": 1e-07,
|
203 |
+
"max_position_embeddings": 512,
|
204 |
+
"max_relative_positions": -1,
|
205 |
+
"model_type": "deberta-v2",
|
206 |
+
"norm_rel_ebd": "layer_norm",
|
207 |
+
"num_attention_heads": 12,
|
208 |
+
"num_hidden_layers": 12,
|
209 |
+
"pad_token_id": 0,
|
210 |
+
"pooler_dropout": 0,
|
211 |
+
"pooler_hidden_act": "gelu",
|
212 |
+
"pooler_hidden_size": 768,
|
213 |
+
"pos_att_type": [
|
214 |
+
"p2c",
|
215 |
+
"c2p"
|
216 |
+
],
|
217 |
+
"position_biased_input": false,
|
218 |
+
"position_buckets": 256,
|
219 |
+
"relative_attention": true,
|
220 |
+
"share_att_key": true,
|
221 |
+
"torch_dtype": "float32",
|
222 |
+
"transformers_version": "4.35.0",
|
223 |
+
"type_vocab_size": 0,
|
224 |
+
"vocab_size": 251000
|
225 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5835fbcbbdb58b868f0474e0e742b61c0d2be6d811241a5c2a4e439543c408a6
|
3 |
+
size 1113185580
|
special_tokens_map.json
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": "[CLS]",
|
3 |
+
"cls_token": "[CLS]",
|
4 |
+
"eos_token": "[SEP]",
|
5 |
+
"mask_token": "[MASK]",
|
6 |
+
"pad_token": "[PAD]",
|
7 |
+
"sep_token": "[SEP]",
|
8 |
+
"unk_token": {
|
9 |
+
"content": "[UNK]",
|
10 |
+
"lstrip": false,
|
11 |
+
"normalized": true,
|
12 |
+
"rstrip": false,
|
13 |
+
"single_word": false
|
14 |
+
}
|
15 |
+
}
|
spm.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:13c8d666d62a7bc4ac8f040aab68e942c861f93303156cc28f5c7e885d86d6e3
|
3 |
+
size 4305025
|
tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b8526679586383c62039cf0a3fde1398f047c9f2927186be57eb14e2c229279a
|
3 |
+
size 16331328
|
tokenizer_config.json
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "[CLS]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "[SEP]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"3": {
|
28 |
+
"content": "[UNK]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": true,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"250101": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"bos_token": "[CLS]",
|
45 |
+
"clean_up_tokenization_spaces": true,
|
46 |
+
"cls_token": "[CLS]",
|
47 |
+
"do_lower_case": false,
|
48 |
+
"eos_token": "[SEP]",
|
49 |
+
"mask_token": "[MASK]",
|
50 |
+
"model_max_length": 1000000000000000019884624838656,
|
51 |
+
"pad_token": "[PAD]",
|
52 |
+
"sep_token": "[SEP]",
|
53 |
+
"sp_model_kwargs": {},
|
54 |
+
"split_by_punct": false,
|
55 |
+
"tokenizer_class": "DebertaV2Tokenizer",
|
56 |
+
"unk_token": "[UNK]",
|
57 |
+
"vocab_type": "spm"
|
58 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d8b5d5b79e7ec03ce40af3680fcdbbc9a21bdb37aa8a3e32d45bf86c9a8f73f5
|
3 |
+
size 4536
|