Commit
·
34c66a7
1
Parent(s):
624fd59
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- precision
|
7 |
+
- recall
|
8 |
+
- f1
|
9 |
+
- accuracy
|
10 |
+
model-index:
|
11 |
+
- name: req_mod_ner_modelv2
|
12 |
+
results: []
|
13 |
+
---
|
14 |
+
|
15 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
16 |
+
should probably proofread and complete it, then remove this comment. -->
|
17 |
+
|
18 |
+
# req_mod_ner_modelv2
|
19 |
+
|
20 |
+
This model is a fine-tuned version of [pdelobelle/robbert-v2-dutch-ner](https://huggingface.co/pdelobelle/robbert-v2-dutch-ner) on the None dataset.
|
21 |
+
It achieves the following results on the evaluation set:
|
22 |
+
- Loss: 0.6964
|
23 |
+
- Precision: 0.544
|
24 |
+
- Recall: 0.5862
|
25 |
+
- F1: 0.5643
|
26 |
+
- Accuracy: 0.9153
|
27 |
+
|
28 |
+
## Model description
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Intended uses & limitations
|
33 |
+
|
34 |
+
More information needed
|
35 |
+
|
36 |
+
## Training and evaluation data
|
37 |
+
|
38 |
+
More information needed
|
39 |
+
|
40 |
+
## Training procedure
|
41 |
+
|
42 |
+
### Training hyperparameters
|
43 |
+
|
44 |
+
The following hyperparameters were used during training:
|
45 |
+
- learning_rate: 1e-05
|
46 |
+
- train_batch_size: 2
|
47 |
+
- eval_batch_size: 2
|
48 |
+
- seed: 42
|
49 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
50 |
+
- lr_scheduler_type: linear
|
51 |
+
- num_epochs: 32
|
52 |
+
|
53 |
+
### Training results
|
54 |
+
|
55 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
56 |
+
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
57 |
+
| No log | 1.0 | 120 | 0.6075 | 0.8095 | 0.1466 | 0.2482 | 0.8822 |
|
58 |
+
| No log | 2.0 | 240 | 0.4917 | 0.6667 | 0.1897 | 0.2953 | 0.8878 |
|
59 |
+
| No log | 3.0 | 360 | 0.4429 | 0.5 | 0.3362 | 0.4021 | 0.8918 |
|
60 |
+
| No log | 4.0 | 480 | 0.4255 | 0.5 | 0.4914 | 0.4957 | 0.9007 |
|
61 |
+
| 0.507 | 5.0 | 600 | 0.4278 | 0.5085 | 0.5172 | 0.5128 | 0.9007 |
|
62 |
+
| 0.507 | 6.0 | 720 | 0.4321 | 0.5294 | 0.5431 | 0.5362 | 0.9064 |
|
63 |
+
| 0.507 | 7.0 | 840 | 0.4574 | 0.5410 | 0.5690 | 0.5546 | 0.9064 |
|
64 |
+
| 0.507 | 8.0 | 960 | 0.4720 | 0.5804 | 0.5603 | 0.5702 | 0.9096 |
|
65 |
+
| 0.1626 | 9.0 | 1080 | 0.4947 | 0.5197 | 0.5690 | 0.5432 | 0.9056 |
|
66 |
+
| 0.1626 | 10.0 | 1200 | 0.5013 | 0.5159 | 0.5603 | 0.5372 | 0.9096 |
|
67 |
+
| 0.1626 | 11.0 | 1320 | 0.5306 | 0.5271 | 0.5862 | 0.5551 | 0.9104 |
|
68 |
+
| 0.1626 | 12.0 | 1440 | 0.5450 | 0.5070 | 0.6207 | 0.5581 | 0.9112 |
|
69 |
+
| 0.0687 | 13.0 | 1560 | 0.5753 | 0.5152 | 0.5862 | 0.5484 | 0.9112 |
|
70 |
+
| 0.0687 | 14.0 | 1680 | 0.5746 | 0.5547 | 0.6121 | 0.5820 | 0.9169 |
|
71 |
+
| 0.0687 | 15.0 | 1800 | 0.5925 | 0.5328 | 0.6293 | 0.5771 | 0.9144 |
|
72 |
+
| 0.0687 | 16.0 | 1920 | 0.6200 | 0.5656 | 0.5948 | 0.5798 | 0.9144 |
|
73 |
+
| 0.0368 | 17.0 | 2040 | 0.6442 | 0.5583 | 0.5776 | 0.5678 | 0.9169 |
|
74 |
+
| 0.0368 | 18.0 | 2160 | 0.6468 | 0.5317 | 0.5776 | 0.5537 | 0.9136 |
|
75 |
+
| 0.0368 | 19.0 | 2280 | 0.6563 | 0.5403 | 0.5776 | 0.5583 | 0.9153 |
|
76 |
+
| 0.0368 | 20.0 | 2400 | 0.6683 | 0.5323 | 0.5690 | 0.5500 | 0.9104 |
|
77 |
+
| 0.0227 | 21.0 | 2520 | 0.6766 | 0.5074 | 0.5948 | 0.5476 | 0.9096 |
|
78 |
+
| 0.0227 | 22.0 | 2640 | 0.6784 | 0.4965 | 0.6121 | 0.5483 | 0.9072 |
|
79 |
+
| 0.0227 | 23.0 | 2760 | 0.6897 | 0.5583 | 0.5776 | 0.5678 | 0.9144 |
|
80 |
+
| 0.0227 | 24.0 | 2880 | 0.6858 | 0.5182 | 0.6121 | 0.5613 | 0.9112 |
|
81 |
+
| 0.0146 | 25.0 | 3000 | 0.6828 | 0.5224 | 0.6034 | 0.5600 | 0.9128 |
|
82 |
+
| 0.0146 | 26.0 | 3120 | 0.6937 | 0.5528 | 0.5862 | 0.5690 | 0.9169 |
|
83 |
+
| 0.0146 | 27.0 | 3240 | 0.6939 | 0.5397 | 0.5862 | 0.5620 | 0.9144 |
|
84 |
+
| 0.0146 | 28.0 | 3360 | 0.6934 | 0.5476 | 0.5948 | 0.5702 | 0.9169 |
|
85 |
+
| 0.0146 | 29.0 | 3480 | 0.6848 | 0.5147 | 0.6034 | 0.5556 | 0.9120 |
|
86 |
+
| 0.0132 | 30.0 | 3600 | 0.6864 | 0.5231 | 0.5862 | 0.5528 | 0.9112 |
|
87 |
+
| 0.0132 | 31.0 | 3720 | 0.6948 | 0.544 | 0.5862 | 0.5643 | 0.9161 |
|
88 |
+
| 0.0132 | 32.0 | 3840 | 0.6964 | 0.544 | 0.5862 | 0.5643 | 0.9153 |
|
89 |
+
|
90 |
+
|
91 |
+
### Framework versions
|
92 |
+
|
93 |
+
- Transformers 4.24.0
|
94 |
+
- Pytorch 2.0.0
|
95 |
+
- Datasets 2.9.0
|
96 |
+
- Tokenizers 0.11.0
|