File size: 3,587 Bytes
33db5cc
4ef8a05
 
fa09cb9
33db5cc
 
 
fa09cb9
33db5cc
fa09cb9
 
4ef8a05
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33db5cc
 
 
 
 
fa09cb9
 
 
 
33db5cc
 
 
 
 
cfb0468
3311278
 
 
 
 
33db5cc
08191ac
 
 
 
33db5cc
 
 
3311278
33db5cc
 
 
3311278
 
33db5cc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
08191ac
 
 
 
33db5cc
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
---
language:
- nl
license: cc-by-nc-sa-4.0
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
widget:
- text: In de Zaaktypeconfiguratie kan per fase een andere behandelaar worden geconfigureerd
    waardoor bij de overgang naar de volgende status de behandelaar automatisch wordt
    gewijzigd. De behandelaar/groep behandelaren kan automatisch worden bepaald op
    basis van een kenmerk.
- text: Er kan informatie aan het digitale formulier worden toegevoegd (gespreksverslagen
    en resultaatafspraken bijvoorbeeld) door medewerker en/of leidinggevende, dit
    kan tussentijds opgeslagen en/of afgesloten worden voordat het wordt vrijgegeven
    voor de andere partij.
- text: De Oplossing ondersteunt parafering en het plaatsen van een gecertificeerde
    elektronische handtekening.
- text: De Aangeboden oplossing biedt de functionaliteit om individuele en bulkmutaties
    te verwerken met ingangsdatum op elke willekeurige datum in de maand, zowel in
    het verleden als in de toekomst, binnen een lopend kalenderjaar.
base_model: GroNLP/bert-base-dutch-cased
model-index:
- name: requirements_ambiguity_v2
  results: []
---





<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# requirements_ambiguity_v2

This model is a fine-tuned version of [GroNLP/bert-base-dutch-cased](https://huggingface.co/GroNLP/bert-base-dutch-cased) on a private dataset with 2,523 labeled software requirements for ambiguity detection in Dutch.

Please contact me via [LinkedIn](https://www.linkedin.com/in/denizayhan/) if you have any questions about this model or the dataset used. 

The dataset and this model were created as part of the final project assignment of the Natural Language Understanding course (XCS224U) from the Professional AI Program of the Stanford School of Engineering. 

It achieves the following results on the evaluation set:
- Loss: 0.7485
- Accuracy: 0.8458
- F1: 0.8442
- Recall: 0.7474

## Intended uses & limitations

The model performs automated ambiguity detection through binary text classification. Its intended use is as a tool voor requirements engineers to detect spurious and ambiguous formulations. 

## Training and evaluation data

The model was trained on ReqAmbi dataset. This dataset is private and contains 2,523 requirement formulations. Each requirement is manually 
labeled 0 (unambiguous) or 1 (ambiguous). The dataset is split 2,019/253/253 into train, validation and test. The reported metrics are from the evaluation on the test set. The validation set was used for cross-validation during training.

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1     | Recall |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:------:|
| 0.5268        | 1.0   | 36   | 0.5424          | 0.8063   | 0.8057 | 0.7263 |
| 0.318         | 2.0   | 72   | 0.4688          | 0.8182   | 0.8182 | 0.7579 |
| 0.1244        | 3.0   | 108  | 0.6019          | 0.8379   | 0.8366 | 0.7474 |
| 0.0308        | 4.0   | 144  | 0.7485          | 0.8458   | 0.8442 | 0.7474 |


### Framework versions

- Transformers 4.24.0
- Pytorch 2.0.0
- Datasets 2.9.0
- Tokenizers 0.11.0