--- tags: - generated_from_trainer metrics: - accuracy - f1 - recall model-index: - name: requirements_ambiguity_v2 results: [] --- # requirements_ambiguity_v2 This model is a fine-tuned version of [GroNLP/bert-base-dutch-cased](https://huggingface.co/GroNLP/bert-base-dutch-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.7485 - Accuracy: 0.8458 - F1: 0.8442 - Recall: 0.7474 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:------:| | 0.5268 | 1.0 | 36 | 0.5424 | 0.8063 | 0.8057 | 0.7263 | | 0.318 | 2.0 | 72 | 0.4688 | 0.8182 | 0.8182 | 0.7579 | | 0.1244 | 3.0 | 108 | 0.6019 | 0.8379 | 0.8366 | 0.7474 | | 0.0308 | 4.0 | 144 | 0.7485 | 0.8458 | 0.8442 | 0.7474 | ### Framework versions - Transformers 4.24.0 - Pytorch 2.0.0 - Datasets 2.9.0 - Tokenizers 0.11.0