Upload Training Notebook (Simple NER v2).ipynb
Browse files
Training Notebook (Simple NER v2).ipynb
ADDED
@@ -0,0 +1,1374 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 1,
|
6 |
+
"id": "c88f989c",
|
7 |
+
"metadata": {},
|
8 |
+
"outputs": [],
|
9 |
+
"source": [
|
10 |
+
"import os\n",
|
11 |
+
"os.environ['CUDA_VISIBLE_DEVICES']='7'"
|
12 |
+
]
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"cell_type": "code",
|
16 |
+
"execution_count": 2,
|
17 |
+
"id": "bfdbe247",
|
18 |
+
"metadata": {
|
19 |
+
"scrolled": true
|
20 |
+
},
|
21 |
+
"outputs": [
|
22 |
+
{
|
23 |
+
"name": "stderr",
|
24 |
+
"output_type": "stream",
|
25 |
+
"text": [
|
26 |
+
"2023-02-26 02:35:07.275938: I tensorflow/core/platform/cpu_feature_guard.cc:193] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX2 FMA\n",
|
27 |
+
"To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.\n",
|
28 |
+
"2023-02-26 02:35:07.472394: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcudart.so.11.0'; dlerror: libcudart.so.11.0: cannot open shared object file: No such file or directory\n",
|
29 |
+
"2023-02-26 02:35:07.472434: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine.\n",
|
30 |
+
"2023-02-26 02:35:07.503598: E tensorflow/stream_executor/cuda/cuda_blas.cc:2981] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered\n",
|
31 |
+
"2023-02-26 02:35:08.603575: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer.so.7'; dlerror: libnvinfer.so.7: cannot open shared object file: No such file or directory\n",
|
32 |
+
"2023-02-26 02:35:08.603678: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer_plugin.so.7'; dlerror: libnvinfer_plugin.so.7: cannot open shared object file: No such file or directory\n",
|
33 |
+
"2023-02-26 02:35:08.603689: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Cannot dlopen some TensorRT libraries. If you would like to use Nvidia GPU with TensorRT, please make sure the missing libraries mentioned above are installed properly.\n",
|
34 |
+
"2023-02-26 02:35:15.326595: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcudart.so.11.0'; dlerror: libcudart.so.11.0: cannot open shared object file: No such file or directory\n",
|
35 |
+
"2023-02-26 02:35:15.326728: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcublas.so.11'; dlerror: libcublas.so.11: cannot open shared object file: No such file or directory\n",
|
36 |
+
"2023-02-26 02:35:15.326831: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcublasLt.so.11'; dlerror: libcublasLt.so.11: cannot open shared object file: No such file or directory\n",
|
37 |
+
"2023-02-26 02:35:15.327013: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcusolver.so.11'; dlerror: libcusolver.so.11: cannot open shared object file: No such file or directory\n",
|
38 |
+
"2023-02-26 02:35:15.327108: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcusparse.so.11'; dlerror: libcusparse.so.11: cannot open shared object file: No such file or directory\n",
|
39 |
+
"2023-02-26 02:35:15.327205: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcudnn.so.8'; dlerror: libcudnn.so.8: cannot open shared object file: No such file or directory\n",
|
40 |
+
"2023-02-26 02:35:15.327224: W tensorflow/core/common_runtime/gpu/gpu_device.cc:1934] Cannot dlopen some GPU libraries. Please make sure the missing libraries mentioned above are installed properly if you would like to use GPU. Follow the guide at https://www.tensorflow.org/install/gpu for how to download and setup the required libraries for your platform.\n",
|
41 |
+
"Skipping registering GPU devices...\n"
|
42 |
+
]
|
43 |
+
}
|
44 |
+
],
|
45 |
+
"source": [
|
46 |
+
"from transformers import AutoTokenizer\n",
|
47 |
+
"import re\n",
|
48 |
+
"import numpy as np\n",
|
49 |
+
"from random import Random\n",
|
50 |
+
"import torch\n",
|
51 |
+
"import pandas as pd\n",
|
52 |
+
"import spacy\n",
|
53 |
+
"import random\n",
|
54 |
+
"from datasets import load_dataset\n",
|
55 |
+
"from transformers import (\n",
|
56 |
+
" AutoModelForTokenClassification,\n",
|
57 |
+
" AutoTokenizer,\n",
|
58 |
+
" DataCollatorForTokenClassification,\n",
|
59 |
+
" TrainingArguments,\n",
|
60 |
+
" Trainer,\n",
|
61 |
+
" set_seed)\n",
|
62 |
+
"import numpy as np\n",
|
63 |
+
"import datasets\n",
|
64 |
+
"from collections import defaultdict\n",
|
65 |
+
"from datasets import load_metric"
|
66 |
+
]
|
67 |
+
},
|
68 |
+
{
|
69 |
+
"cell_type": "code",
|
70 |
+
"execution_count": 3,
|
71 |
+
"id": "7a916e9f",
|
72 |
+
"metadata": {},
|
73 |
+
"outputs": [],
|
74 |
+
"source": [
|
75 |
+
"# !pip install seqeval"
|
76 |
+
]
|
77 |
+
},
|
78 |
+
{
|
79 |
+
"cell_type": "code",
|
80 |
+
"execution_count": 4,
|
81 |
+
"id": "4b0590b7",
|
82 |
+
"metadata": {},
|
83 |
+
"outputs": [],
|
84 |
+
"source": [
|
85 |
+
"per_device_train_batch_size = 16\n",
|
86 |
+
"per_device_eval_batch_size = 32\n",
|
87 |
+
"num_train_epochs = 5\n",
|
88 |
+
"weight_decay = 0.1\n",
|
89 |
+
"warmup_ratio = 0.1\n",
|
90 |
+
"learning_rate = 5e-5\n",
|
91 |
+
"load_best_model_at_end = True\n",
|
92 |
+
"output_dir = \"../akoksal/earthquake_ner_models/\"\n",
|
93 |
+
"old_data_path = \"annotated_address_dataset_07022023_766train_192test/\"\n",
|
94 |
+
"data_path = \"deprem-private/ner_v12\"\n",
|
95 |
+
"cache_dir = \"../akoksal/hf_cache\"\n",
|
96 |
+
"saved_models_path = \"../akoksal/earthquake_ner_models/\"\n",
|
97 |
+
"device = \"cuda\"\n",
|
98 |
+
"seed = 42\n",
|
99 |
+
"model_names = [\"dbmdz/bert-base-turkish-cased\",\n",
|
100 |
+
" \"dbmdz/electra-base-turkish-mc4-cased-discriminator\",\n",
|
101 |
+
" \"dbmdz/bert-base-turkish-128k-cased\",\n",
|
102 |
+
" \"dbmdz/convbert-base-turkish-cased\",\n",
|
103 |
+
" \"bert-base-multilingual-cased\",\n",
|
104 |
+
" \"xlm-roberta-base\"]\n",
|
105 |
+
"model_name = model_names[2]"
|
106 |
+
]
|
107 |
+
},
|
108 |
+
{
|
109 |
+
"cell_type": "code",
|
110 |
+
"execution_count": 5,
|
111 |
+
"id": "9aeb3dbe",
|
112 |
+
"metadata": {},
|
113 |
+
"outputs": [
|
114 |
+
{
|
115 |
+
"data": {
|
116 |
+
"text/plain": [
|
117 |
+
"'dbmdz/bert-base-turkish-128k-cased'"
|
118 |
+
]
|
119 |
+
},
|
120 |
+
"execution_count": 5,
|
121 |
+
"metadata": {},
|
122 |
+
"output_type": "execute_result"
|
123 |
+
}
|
124 |
+
],
|
125 |
+
"source": [
|
126 |
+
"model_name"
|
127 |
+
]
|
128 |
+
},
|
129 |
+
{
|
130 |
+
"cell_type": "code",
|
131 |
+
"execution_count": 6,
|
132 |
+
"id": "ffeb73e4",
|
133 |
+
"metadata": {},
|
134 |
+
"outputs": [],
|
135 |
+
"source": [
|
136 |
+
"set_seed(seed)"
|
137 |
+
]
|
138 |
+
},
|
139 |
+
{
|
140 |
+
"cell_type": "code",
|
141 |
+
"execution_count": 7,
|
142 |
+
"id": "a876c516",
|
143 |
+
"metadata": {},
|
144 |
+
"outputs": [],
|
145 |
+
"source": [
|
146 |
+
"id2label = {\n",
|
147 |
+
" 0: \"O\",\n",
|
148 |
+
" 1: \"B-bina\",\n",
|
149 |
+
" 2: \"I-bina\",\n",
|
150 |
+
" 3: \"B-bulvar\",\n",
|
151 |
+
" 4: \"I-bulvar\",\n",
|
152 |
+
" 5: \"B-cadde\",\n",
|
153 |
+
" 6: \"I-cadde\",\n",
|
154 |
+
" 7: \"B-diskapino\",\n",
|
155 |
+
" 8: \"I-diskapino\",\n",
|
156 |
+
" 9: \"B-ilce\",\n",
|
157 |
+
" 10: \"I-ilce\",\n",
|
158 |
+
" 11: \"B-isim\",\n",
|
159 |
+
" 12: \"I-isim\",\n",
|
160 |
+
" 13: \"B-mahalle\",\n",
|
161 |
+
" 14: \"I-mahalle\",\n",
|
162 |
+
" 15: \"B-sehir\",\n",
|
163 |
+
" 16: \"I-sehir\",\n",
|
164 |
+
" 17: \"B-site\",\n",
|
165 |
+
" 18: \"I-site\",\n",
|
166 |
+
" 19: \"B-sokak\",\n",
|
167 |
+
" 20: \"I-sokak\",\n",
|
168 |
+
" 21: \"B-soyisim\",\n",
|
169 |
+
" 22: \"I-soyisim\",\n",
|
170 |
+
" 23: \"B-telefonno\",\n",
|
171 |
+
" 24: \"I-telefonno\",\n",
|
172 |
+
"}\n",
|
173 |
+
"\n",
|
174 |
+
"label2id = {label: idx for idx, label in id2label.items()}\n",
|
175 |
+
"label_names = list(label2id.keys())"
|
176 |
+
]
|
177 |
+
},
|
178 |
+
{
|
179 |
+
"cell_type": "code",
|
180 |
+
"execution_count": 8,
|
181 |
+
"id": "2e0caffc",
|
182 |
+
"metadata": {},
|
183 |
+
"outputs": [],
|
184 |
+
"source": [
|
185 |
+
"# from huggingface_hub import login\n",
|
186 |
+
"# login()"
|
187 |
+
]
|
188 |
+
},
|
189 |
+
{
|
190 |
+
"cell_type": "code",
|
191 |
+
"execution_count": 9,
|
192 |
+
"id": "c74850f9",
|
193 |
+
"metadata": {},
|
194 |
+
"outputs": [
|
195 |
+
{
|
196 |
+
"name": "stderr",
|
197 |
+
"output_type": "stream",
|
198 |
+
"text": [
|
199 |
+
"Some weights of the model checkpoint at dbmdz/bert-base-turkish-128k-cased were not used when initializing BertForTokenClassification: ['cls.predictions.transform.dense.weight', 'cls.predictions.transform.dense.bias', 'cls.predictions.decoder.bias', 'cls.predictions.transform.LayerNorm.weight', 'cls.predictions.transform.LayerNorm.bias', 'cls.predictions.bias', 'cls.predictions.decoder.weight', 'cls.seq_relationship.weight', 'cls.seq_relationship.bias']\n",
|
200 |
+
"- This IS expected if you are initializing BertForTokenClassification from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n",
|
201 |
+
"- This IS NOT expected if you are initializing BertForTokenClassification from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n",
|
202 |
+
"Some weights of BertForTokenClassification were not initialized from the model checkpoint at dbmdz/bert-base-turkish-128k-cased and are newly initialized: ['classifier.bias', 'classifier.weight']\n",
|
203 |
+
"You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n"
|
204 |
+
]
|
205 |
+
}
|
206 |
+
],
|
207 |
+
"source": [
|
208 |
+
"tokenizer = AutoTokenizer.from_pretrained(model_name)\n",
|
209 |
+
"model = AutoModelForTokenClassification.from_pretrained(model_name,\n",
|
210 |
+
" num_labels=len(label_names),\n",
|
211 |
+
" id2label=id2label,\n",
|
212 |
+
" cache_dir=cache_dir).to(device)"
|
213 |
+
]
|
214 |
+
},
|
215 |
+
{
|
216 |
+
"cell_type": "code",
|
217 |
+
"execution_count": 10,
|
218 |
+
"id": "4c1fe653",
|
219 |
+
"metadata": {},
|
220 |
+
"outputs": [
|
221 |
+
{
|
222 |
+
"name": "stderr",
|
223 |
+
"output_type": "stream",
|
224 |
+
"text": [
|
225 |
+
"Using custom data configuration deprem-private--ner_v12-e2f61c5a18a7a738\n",
|
226 |
+
"Found cached dataset text (/mounts/Users/cisintern/akoksal/.cache/huggingface/datasets/deprem-private___text/deprem-private--ner_v12-e2f61c5a18a7a738/0.0.0/cb1e9bd71a82ad27976be3b12b407850fe2837d80c22c5e03a28949843a8ace2)\n"
|
227 |
+
]
|
228 |
+
},
|
229 |
+
{
|
230 |
+
"data": {
|
231 |
+
"application/vnd.jupyter.widget-view+json": {
|
232 |
+
"model_id": "22bc5f5f97204b41b2bc5dc3b71036e1",
|
233 |
+
"version_major": 2,
|
234 |
+
"version_minor": 0
|
235 |
+
},
|
236 |
+
"text/plain": [
|
237 |
+
" 0%| | 0/3 [00:00<?, ?it/s]"
|
238 |
+
]
|
239 |
+
},
|
240 |
+
"metadata": {},
|
241 |
+
"output_type": "display_data"
|
242 |
+
}
|
243 |
+
],
|
244 |
+
"source": [
|
245 |
+
"raw_dataset = datasets.load_dataset(\"deprem-private/ner_v12\", use_auth_token=True)\n",
|
246 |
+
"\n",
|
247 |
+
"new_dataset_json = {}\n",
|
248 |
+
"for split in [\"train\", \"validation\", \"test\"]:\n",
|
249 |
+
" ids = []\n",
|
250 |
+
" sentences = []\n",
|
251 |
+
" labels = []\n",
|
252 |
+
" ids = []\n",
|
253 |
+
" cur_idx = 0\n",
|
254 |
+
" unique_labels = set()\n",
|
255 |
+
" temp_sent = []\n",
|
256 |
+
" temp_labels = []\n",
|
257 |
+
" for word in raw_dataset[split][\"text\"]:\n",
|
258 |
+
" \n",
|
259 |
+
" if word!=\"\":\n",
|
260 |
+
" temp_sent.append((word.split()[0]))\n",
|
261 |
+
" temp_labels.append(label2id[(word.split()[1])])\n",
|
262 |
+
" else:\n",
|
263 |
+
" sentences.append(temp_sent)\n",
|
264 |
+
" labels.append(temp_labels)\n",
|
265 |
+
" ids.append(cur_idx)\n",
|
266 |
+
" cur_idx+=1\n",
|
267 |
+
" temp_sent = []\n",
|
268 |
+
" temp_labels = []\n",
|
269 |
+
" new_dataset_json[split] = {\"tokens\":sentences, \"ner_tags\":labels, \"ids\":ids}\n",
|
270 |
+
"\n",
|
271 |
+
"dataset = datasets.DatasetDict()\n",
|
272 |
+
"# using your `Dict` object\n",
|
273 |
+
"for k,v in new_dataset_json.items():\n",
|
274 |
+
" dataset[k] = datasets.Dataset.from_dict(v)"
|
275 |
+
]
|
276 |
+
},
|
277 |
+
{
|
278 |
+
"cell_type": "code",
|
279 |
+
"execution_count": 11,
|
280 |
+
"id": "65a66af9",
|
281 |
+
"metadata": {},
|
282 |
+
"outputs": [
|
283 |
+
{
|
284 |
+
"data": {
|
285 |
+
"application/vnd.jupyter.widget-view+json": {
|
286 |
+
"model_id": "a403f5fadb3041f4b18acc7ec41a2d36",
|
287 |
+
"version_major": 2,
|
288 |
+
"version_minor": 0
|
289 |
+
},
|
290 |
+
"text/plain": [
|
291 |
+
" 0%| | 0/1 [00:00<?, ?ba/s]"
|
292 |
+
]
|
293 |
+
},
|
294 |
+
"metadata": {},
|
295 |
+
"output_type": "display_data"
|
296 |
+
},
|
297 |
+
{
|
298 |
+
"data": {
|
299 |
+
"application/vnd.jupyter.widget-view+json": {
|
300 |
+
"model_id": "e2410f6106514cfd8207d8b42748c66d",
|
301 |
+
"version_major": 2,
|
302 |
+
"version_minor": 0
|
303 |
+
},
|
304 |
+
"text/plain": [
|
305 |
+
" 0%| | 0/1 [00:00<?, ?ba/s]"
|
306 |
+
]
|
307 |
+
},
|
308 |
+
"metadata": {},
|
309 |
+
"output_type": "display_data"
|
310 |
+
},
|
311 |
+
{
|
312 |
+
"data": {
|
313 |
+
"application/vnd.jupyter.widget-view+json": {
|
314 |
+
"model_id": "227e163e07b2414da9abdbe11cb0c6bf",
|
315 |
+
"version_major": 2,
|
316 |
+
"version_minor": 0
|
317 |
+
},
|
318 |
+
"text/plain": [
|
319 |
+
" 0%| | 0/1 [00:00<?, ?ba/s]"
|
320 |
+
]
|
321 |
+
},
|
322 |
+
"metadata": {},
|
323 |
+
"output_type": "display_data"
|
324 |
+
}
|
325 |
+
],
|
326 |
+
"source": [
|
327 |
+
"# dataset = datasets.load_from_disk(old_data_path)\n",
|
328 |
+
"def tokenize_and_align_labels(examples):\n",
|
329 |
+
" tokenized_inputs = tokenizer(examples[\"tokens\"], truncation=True, is_split_into_words=True)\n",
|
330 |
+
"\n",
|
331 |
+
" labels = []\n",
|
332 |
+
" for i, label in enumerate(examples[f\"ner_tags\"]):\n",
|
333 |
+
" word_ids = tokenized_inputs.word_ids(batch_index=i) # Map tokens to their respective word.\n",
|
334 |
+
" previous_word_idx = None\n",
|
335 |
+
" label_ids = []\n",
|
336 |
+
" for word_idx in word_ids: # Set the special tokens to -100.\n",
|
337 |
+
" if word_idx is None:\n",
|
338 |
+
" label_ids.append(-100)\n",
|
339 |
+
" elif word_idx != previous_word_idx: # Only label the first token of a given word.\n",
|
340 |
+
" label_ids.append(label[word_idx])\n",
|
341 |
+
" else:\n",
|
342 |
+
" label_ids.append(-100)\n",
|
343 |
+
" previous_word_idx = word_idx\n",
|
344 |
+
" labels.append(label_ids)\n",
|
345 |
+
"\n",
|
346 |
+
" tokenized_inputs[\"labels\"] = labels\n",
|
347 |
+
" return tokenized_inputs\n",
|
348 |
+
"\n",
|
349 |
+
"tokenized_dataset = dataset.map(tokenize_and_align_labels, batched=True)"
|
350 |
+
]
|
351 |
+
},
|
352 |
+
{
|
353 |
+
"cell_type": "code",
|
354 |
+
"execution_count": 12,
|
355 |
+
"id": "6b43934d",
|
356 |
+
"metadata": {},
|
357 |
+
"outputs": [],
|
358 |
+
"source": [
|
359 |
+
"data_collator = DataCollatorForTokenClassification(tokenizer)"
|
360 |
+
]
|
361 |
+
},
|
362 |
+
{
|
363 |
+
"cell_type": "code",
|
364 |
+
"execution_count": 13,
|
365 |
+
"id": "c24f52db",
|
366 |
+
"metadata": {},
|
367 |
+
"outputs": [
|
368 |
+
{
|
369 |
+
"name": "stderr",
|
370 |
+
"output_type": "stream",
|
371 |
+
"text": [
|
372 |
+
"/tmp/ipykernel_2652487/885599324.py:1: FutureWarning: load_metric is deprecated and will be removed in the next major version of datasets. Use 'evaluate.load' instead, from the new library 🤗 Evaluate: https://huggingface.co/docs/evaluate\n",
|
373 |
+
" metric = load_metric(\"seqeval\")\n"
|
374 |
+
]
|
375 |
+
}
|
376 |
+
],
|
377 |
+
"source": [
|
378 |
+
"metric = load_metric(\"seqeval\")\n",
|
379 |
+
"def compute_metrics(p):\n",
|
380 |
+
" predictions, labels = p\n",
|
381 |
+
" predictions = np.argmax(predictions, axis=2)\n",
|
382 |
+
"\n",
|
383 |
+
" # Remove ignored index (special tokens)\n",
|
384 |
+
" true_predictions = [\n",
|
385 |
+
" [label_names[p] for (p, l) in zip(prediction, label) if l != -100]\n",
|
386 |
+
" for prediction, label in zip(predictions, labels)\n",
|
387 |
+
" ]\n",
|
388 |
+
" true_labels = [\n",
|
389 |
+
" [label_names[l] for (p, l) in zip(prediction, label) if l != -100]\n",
|
390 |
+
" for prediction, label in zip(predictions, labels)\n",
|
391 |
+
" ]\n",
|
392 |
+
"\n",
|
393 |
+
" results = metric.compute(predictions=true_predictions, references=true_labels)\n",
|
394 |
+
" flattened_results = {\n",
|
395 |
+
" \"overall_precision\": results[\"overall_precision\"],\n",
|
396 |
+
" \"overall_recall\": results[\"overall_recall\"],\n",
|
397 |
+
" \"overall_f1\": results[\"overall_f1\"],\n",
|
398 |
+
" \"overall_accuracy\": results[\"overall_accuracy\"],\n",
|
399 |
+
" }\n",
|
400 |
+
" for k in results.keys():\n",
|
401 |
+
" if(k not in flattened_results.keys()):\n",
|
402 |
+
" flattened_results[k+\"_f1\"]=results[k][\"f1\"]\n",
|
403 |
+
" flattened_results[k+\"_recall\"]=results[k][\"recall\"]\n",
|
404 |
+
" flattened_results[k+\"_precision\"]=results[k][\"precision\"]\n",
|
405 |
+
" flattened_results[k+\"_support\"]=results[k][\"number\"]\n",
|
406 |
+
"\n",
|
407 |
+
" return flattened_results"
|
408 |
+
]
|
409 |
+
},
|
410 |
+
{
|
411 |
+
"cell_type": "code",
|
412 |
+
"execution_count": 14,
|
413 |
+
"id": "a955fd51",
|
414 |
+
"metadata": {},
|
415 |
+
"outputs": [],
|
416 |
+
"source": [
|
417 |
+
"training_args = TrainingArguments(\n",
|
418 |
+
" output_dir=saved_models_path,\n",
|
419 |
+
" evaluation_strategy=\"epoch\",\n",
|
420 |
+
" learning_rate=learning_rate,\n",
|
421 |
+
" per_device_train_batch_size=per_device_train_batch_size,\n",
|
422 |
+
" per_device_eval_batch_size=per_device_eval_batch_size,\n",
|
423 |
+
" num_train_epochs=num_train_epochs,\n",
|
424 |
+
" warmup_ratio=warmup_ratio,\n",
|
425 |
+
" weight_decay=weight_decay,\n",
|
426 |
+
" run_name = \"turkish_ner\",\n",
|
427 |
+
" save_strategy='epoch',\n",
|
428 |
+
" logging_strategy=\"epoch\",\n",
|
429 |
+
" save_total_limit=3,\n",
|
430 |
+
" load_best_model_at_end=load_best_model_at_end,\n",
|
431 |
+
" \n",
|
432 |
+
")\n",
|
433 |
+
"trainer = Trainer(\n",
|
434 |
+
" model=model,\n",
|
435 |
+
" args=training_args,\n",
|
436 |
+
" train_dataset=tokenized_dataset[\"train\"],\n",
|
437 |
+
" eval_dataset=tokenized_dataset[\"validation\"],\n",
|
438 |
+
" data_collator=data_collator,\n",
|
439 |
+
" tokenizer=tokenizer,\n",
|
440 |
+
" compute_metrics=compute_metrics\n",
|
441 |
+
")"
|
442 |
+
]
|
443 |
+
},
|
444 |
+
{
|
445 |
+
"cell_type": "code",
|
446 |
+
"execution_count": 15,
|
447 |
+
"id": "9f78efdc",
|
448 |
+
"metadata": {},
|
449 |
+
"outputs": [
|
450 |
+
{
|
451 |
+
"name": "stderr",
|
452 |
+
"output_type": "stream",
|
453 |
+
"text": [
|
454 |
+
"The following columns in the training set don't have a corresponding argument in `BertForTokenClassification.forward` and have been ignored: tokens, ids, ner_tags. If tokens, ids, ner_tags are not expected by `BertForTokenClassification.forward`, you can safely ignore this message.\n",
|
455 |
+
"/mounts/work/akoksal/anaconda3/envs/lmbias/lib/python3.9/site-packages/transformers/optimization.py:306: FutureWarning: This implementation of AdamW is deprecated and will be removed in a future version. Use the PyTorch implementation torch.optim.AdamW instead, or set `no_deprecation_warning=True` to disable this warning\n",
|
456 |
+
" warnings.warn(\n",
|
457 |
+
"***** Running training *****\n",
|
458 |
+
" Num examples = 799\n",
|
459 |
+
" Num Epochs = 5\n",
|
460 |
+
" Instantaneous batch size per device = 16\n",
|
461 |
+
" Total train batch size (w. parallel, distributed & accumulation) = 16\n",
|
462 |
+
" Gradient Accumulation steps = 1\n",
|
463 |
+
" Total optimization steps = 250\n",
|
464 |
+
" Number of trainable parameters = 183773977\n",
|
465 |
+
"You're using a BertTokenizerFast tokenizer. Please note that with a fast tokenizer, using the `__call__` method is faster than using a method to encode the text followed by a call to the `pad` method to get a padded encoding.\n"
|
466 |
+
]
|
467 |
+
},
|
468 |
+
{
|
469 |
+
"data": {
|
470 |
+
"text/html": [
|
471 |
+
"\n",
|
472 |
+
" <div>\n",
|
473 |
+
" \n",
|
474 |
+
" <progress value='250' max='250' style='width:300px; height:20px; vertical-align: middle;'></progress>\n",
|
475 |
+
" [250/250 01:12, Epoch 5/5]\n",
|
476 |
+
" </div>\n",
|
477 |
+
" <table border=\"1\" class=\"dataframe\">\n",
|
478 |
+
" <thead>\n",
|
479 |
+
" <tr style=\"text-align: left;\">\n",
|
480 |
+
" <th>Epoch</th>\n",
|
481 |
+
" <th>Training Loss</th>\n",
|
482 |
+
" <th>Validation Loss</th>\n",
|
483 |
+
" <th>Overall Precision</th>\n",
|
484 |
+
" <th>Overall Recall</th>\n",
|
485 |
+
" <th>Overall F1</th>\n",
|
486 |
+
" <th>Overall Accuracy</th>\n",
|
487 |
+
" <th>Bina F1</th>\n",
|
488 |
+
" <th>Bina Recall</th>\n",
|
489 |
+
" <th>Bina Precision</th>\n",
|
490 |
+
" <th>Bina Support</th>\n",
|
491 |
+
" <th>Bulvar F1</th>\n",
|
492 |
+
" <th>Bulvar Recall</th>\n",
|
493 |
+
" <th>Bulvar Precision</th>\n",
|
494 |
+
" <th>Bulvar Support</th>\n",
|
495 |
+
" <th>Cadde F1</th>\n",
|
496 |
+
" <th>Cadde Recall</th>\n",
|
497 |
+
" <th>Cadde Precision</th>\n",
|
498 |
+
" <th>Cadde Support</th>\n",
|
499 |
+
" <th>Diskapino F1</th>\n",
|
500 |
+
" <th>Diskapino Recall</th>\n",
|
501 |
+
" <th>Diskapino Precision</th>\n",
|
502 |
+
" <th>Diskapino Support</th>\n",
|
503 |
+
" <th>Ilce F1</th>\n",
|
504 |
+
" <th>Ilce Recall</th>\n",
|
505 |
+
" <th>Ilce Precision</th>\n",
|
506 |
+
" <th>Ilce Support</th>\n",
|
507 |
+
" <th>Isim F1</th>\n",
|
508 |
+
" <th>Isim Recall</th>\n",
|
509 |
+
" <th>Isim Precision</th>\n",
|
510 |
+
" <th>Isim Support</th>\n",
|
511 |
+
" <th>Mahalle F1</th>\n",
|
512 |
+
" <th>Mahalle Recall</th>\n",
|
513 |
+
" <th>Mahalle Precision</th>\n",
|
514 |
+
" <th>Mahalle Support</th>\n",
|
515 |
+
" <th>Sehir F1</th>\n",
|
516 |
+
" <th>Sehir Recall</th>\n",
|
517 |
+
" <th>Sehir Precision</th>\n",
|
518 |
+
" <th>Sehir Support</th>\n",
|
519 |
+
" <th>Site F1</th>\n",
|
520 |
+
" <th>Site Recall</th>\n",
|
521 |
+
" <th>Site Precision</th>\n",
|
522 |
+
" <th>Site Support</th>\n",
|
523 |
+
" <th>Sokak F1</th>\n",
|
524 |
+
" <th>Sokak Recall</th>\n",
|
525 |
+
" <th>Sokak Precision</th>\n",
|
526 |
+
" <th>Sokak Support</th>\n",
|
527 |
+
" <th>Soyisim F1</th>\n",
|
528 |
+
" <th>Soyisim Recall</th>\n",
|
529 |
+
" <th>Soyisim Precision</th>\n",
|
530 |
+
" <th>Soyisim Support</th>\n",
|
531 |
+
" <th>Telefonno F1</th>\n",
|
532 |
+
" <th>Telefonno Recall</th>\n",
|
533 |
+
" <th>Telefonno Precision</th>\n",
|
534 |
+
" <th>Telefonno Support</th>\n",
|
535 |
+
" </tr>\n",
|
536 |
+
" </thead>\n",
|
537 |
+
" <tbody>\n",
|
538 |
+
" <tr>\n",
|
539 |
+
" <td>1</td>\n",
|
540 |
+
" <td>1.349500</td>\n",
|
541 |
+
" <td>0.357321</td>\n",
|
542 |
+
" <td>0.783270</td>\n",
|
543 |
+
" <td>0.828974</td>\n",
|
544 |
+
" <td>0.805474</td>\n",
|
545 |
+
" <td>0.908936</td>\n",
|
546 |
+
" <td>0.600000</td>\n",
|
547 |
+
" <td>0.705882</td>\n",
|
548 |
+
" <td>0.521739</td>\n",
|
549 |
+
" <td>34</td>\n",
|
550 |
+
" <td>0.000000</td>\n",
|
551 |
+
" <td>0.000000</td>\n",
|
552 |
+
" <td>0.000000</td>\n",
|
553 |
+
" <td>5</td>\n",
|
554 |
+
" <td>0.588235</td>\n",
|
555 |
+
" <td>0.833333</td>\n",
|
556 |
+
" <td>0.454545</td>\n",
|
557 |
+
" <td>24</td>\n",
|
558 |
+
" <td>0.769231</td>\n",
|
559 |
+
" <td>0.892857</td>\n",
|
560 |
+
" <td>0.675676</td>\n",
|
561 |
+
" <td>28</td>\n",
|
562 |
+
" <td>0.830508</td>\n",
|
563 |
+
" <td>0.816667</td>\n",
|
564 |
+
" <td>0.844828</td>\n",
|
565 |
+
" <td>60</td>\n",
|
566 |
+
" <td>0.888889</td>\n",
|
567 |
+
" <td>0.926829</td>\n",
|
568 |
+
" <td>0.853933</td>\n",
|
569 |
+
" <td>82</td>\n",
|
570 |
+
" <td>0.750000</td>\n",
|
571 |
+
" <td>0.792453</td>\n",
|
572 |
+
" <td>0.711864</td>\n",
|
573 |
+
" <td>53</td>\n",
|
574 |
+
" <td>0.867133</td>\n",
|
575 |
+
" <td>0.861111</td>\n",
|
576 |
+
" <td>0.873239</td>\n",
|
577 |
+
" <td>72</td>\n",
|
578 |
+
" <td>0.000000</td>\n",
|
579 |
+
" <td>0.000000</td>\n",
|
580 |
+
" <td>0.000000</td>\n",
|
581 |
+
" <td>6</td>\n",
|
582 |
+
" <td>0.750000</td>\n",
|
583 |
+
" <td>0.620690</td>\n",
|
584 |
+
" <td>0.947368</td>\n",
|
585 |
+
" <td>29</td>\n",
|
586 |
+
" <td>0.900000</td>\n",
|
587 |
+
" <td>0.887324</td>\n",
|
588 |
+
" <td>0.913043</td>\n",
|
589 |
+
" <td>71</td>\n",
|
590 |
+
" <td>0.985075</td>\n",
|
591 |
+
" <td>1.000000</td>\n",
|
592 |
+
" <td>0.970588</td>\n",
|
593 |
+
" <td>33</td>\n",
|
594 |
+
" </tr>\n",
|
595 |
+
" <tr>\n",
|
596 |
+
" <td>2</td>\n",
|
597 |
+
" <td>0.264700</td>\n",
|
598 |
+
" <td>0.220467</td>\n",
|
599 |
+
" <td>0.885149</td>\n",
|
600 |
+
" <td>0.899396</td>\n",
|
601 |
+
" <td>0.892216</td>\n",
|
602 |
+
" <td>0.944792</td>\n",
|
603 |
+
" <td>0.782609</td>\n",
|
604 |
+
" <td>0.794118</td>\n",
|
605 |
+
" <td>0.771429</td>\n",
|
606 |
+
" <td>34</td>\n",
|
607 |
+
" <td>0.666667</td>\n",
|
608 |
+
" <td>0.800000</td>\n",
|
609 |
+
" <td>0.571429</td>\n",
|
610 |
+
" <td>5</td>\n",
|
611 |
+
" <td>0.875000</td>\n",
|
612 |
+
" <td>0.875000</td>\n",
|
613 |
+
" <td>0.875000</td>\n",
|
614 |
+
" <td>24</td>\n",
|
615 |
+
" <td>0.862069</td>\n",
|
616 |
+
" <td>0.892857</td>\n",
|
617 |
+
" <td>0.833333</td>\n",
|
618 |
+
" <td>28</td>\n",
|
619 |
+
" <td>0.894309</td>\n",
|
620 |
+
" <td>0.916667</td>\n",
|
621 |
+
" <td>0.873016</td>\n",
|
622 |
+
" <td>60</td>\n",
|
623 |
+
" <td>0.884848</td>\n",
|
624 |
+
" <td>0.890244</td>\n",
|
625 |
+
" <td>0.879518</td>\n",
|
626 |
+
" <td>82</td>\n",
|
627 |
+
" <td>0.897196</td>\n",
|
628 |
+
" <td>0.905660</td>\n",
|
629 |
+
" <td>0.888889</td>\n",
|
630 |
+
" <td>53</td>\n",
|
631 |
+
" <td>0.915493</td>\n",
|
632 |
+
" <td>0.902778</td>\n",
|
633 |
+
" <td>0.928571</td>\n",
|
634 |
+
" <td>72</td>\n",
|
635 |
+
" <td>0.181818</td>\n",
|
636 |
+
" <td>0.166667</td>\n",
|
637 |
+
" <td>0.200000</td>\n",
|
638 |
+
" <td>6</td>\n",
|
639 |
+
" <td>0.949153</td>\n",
|
640 |
+
" <td>0.965517</td>\n",
|
641 |
+
" <td>0.933333</td>\n",
|
642 |
+
" <td>29</td>\n",
|
643 |
+
" <td>0.950355</td>\n",
|
644 |
+
" <td>0.943662</td>\n",
|
645 |
+
" <td>0.957143</td>\n",
|
646 |
+
" <td>71</td>\n",
|
647 |
+
" <td>0.985075</td>\n",
|
648 |
+
" <td>1.000000</td>\n",
|
649 |
+
" <td>0.970588</td>\n",
|
650 |
+
" <td>33</td>\n",
|
651 |
+
" </tr>\n",
|
652 |
+
" <tr>\n",
|
653 |
+
" <td>3</td>\n",
|
654 |
+
" <td>0.158700</td>\n",
|
655 |
+
" <td>0.219565</td>\n",
|
656 |
+
" <td>0.876768</td>\n",
|
657 |
+
" <td>0.873239</td>\n",
|
658 |
+
" <td>0.875000</td>\n",
|
659 |
+
" <td>0.940808</td>\n",
|
660 |
+
" <td>0.805556</td>\n",
|
661 |
+
" <td>0.852941</td>\n",
|
662 |
+
" <td>0.763158</td>\n",
|
663 |
+
" <td>34</td>\n",
|
664 |
+
" <td>0.666667</td>\n",
|
665 |
+
" <td>1.000000</td>\n",
|
666 |
+
" <td>0.500000</td>\n",
|
667 |
+
" <td>5</td>\n",
|
668 |
+
" <td>0.880000</td>\n",
|
669 |
+
" <td>0.916667</td>\n",
|
670 |
+
" <td>0.846154</td>\n",
|
671 |
+
" <td>24</td>\n",
|
672 |
+
" <td>0.827586</td>\n",
|
673 |
+
" <td>0.857143</td>\n",
|
674 |
+
" <td>0.800000</td>\n",
|
675 |
+
" <td>28</td>\n",
|
676 |
+
" <td>0.881356</td>\n",
|
677 |
+
" <td>0.866667</td>\n",
|
678 |
+
" <td>0.896552</td>\n",
|
679 |
+
" <td>60</td>\n",
|
680 |
+
" <td>0.822785</td>\n",
|
681 |
+
" <td>0.792683</td>\n",
|
682 |
+
" <td>0.855263</td>\n",
|
683 |
+
" <td>82</td>\n",
|
684 |
+
" <td>0.886792</td>\n",
|
685 |
+
" <td>0.886792</td>\n",
|
686 |
+
" <td>0.886792</td>\n",
|
687 |
+
" <td>53</td>\n",
|
688 |
+
" <td>0.892086</td>\n",
|
689 |
+
" <td>0.861111</td>\n",
|
690 |
+
" <td>0.925373</td>\n",
|
691 |
+
" <td>72</td>\n",
|
692 |
+
" <td>0.400000</td>\n",
|
693 |
+
" <td>0.333333</td>\n",
|
694 |
+
" <td>0.500000</td>\n",
|
695 |
+
" <td>6</td>\n",
|
696 |
+
" <td>0.881356</td>\n",
|
697 |
+
" <td>0.896552</td>\n",
|
698 |
+
" <td>0.866667</td>\n",
|
699 |
+
" <td>29</td>\n",
|
700 |
+
" <td>0.957143</td>\n",
|
701 |
+
" <td>0.943662</td>\n",
|
702 |
+
" <td>0.971014</td>\n",
|
703 |
+
" <td>71</td>\n",
|
704 |
+
" <td>0.985075</td>\n",
|
705 |
+
" <td>1.000000</td>\n",
|
706 |
+
" <td>0.970588</td>\n",
|
707 |
+
" <td>33</td>\n",
|
708 |
+
" </tr>\n",
|
709 |
+
" <tr>\n",
|
710 |
+
" <td>4</td>\n",
|
711 |
+
" <td>0.115000</td>\n",
|
712 |
+
" <td>0.215329</td>\n",
|
713 |
+
" <td>0.897541</td>\n",
|
714 |
+
" <td>0.881288</td>\n",
|
715 |
+
" <td>0.889340</td>\n",
|
716 |
+
" <td>0.946500</td>\n",
|
717 |
+
" <td>0.857143</td>\n",
|
718 |
+
" <td>0.882353</td>\n",
|
719 |
+
" <td>0.833333</td>\n",
|
720 |
+
" <td>34</td>\n",
|
721 |
+
" <td>0.909091</td>\n",
|
722 |
+
" <td>1.000000</td>\n",
|
723 |
+
" <td>0.833333</td>\n",
|
724 |
+
" <td>5</td>\n",
|
725 |
+
" <td>0.897959</td>\n",
|
726 |
+
" <td>0.916667</td>\n",
|
727 |
+
" <td>0.880000</td>\n",
|
728 |
+
" <td>24</td>\n",
|
729 |
+
" <td>0.862069</td>\n",
|
730 |
+
" <td>0.892857</td>\n",
|
731 |
+
" <td>0.833333</td>\n",
|
732 |
+
" <td>28</td>\n",
|
733 |
+
" <td>0.881356</td>\n",
|
734 |
+
" <td>0.866667</td>\n",
|
735 |
+
" <td>0.896552</td>\n",
|
736 |
+
" <td>60</td>\n",
|
737 |
+
" <td>0.810127</td>\n",
|
738 |
+
" <td>0.780488</td>\n",
|
739 |
+
" <td>0.842105</td>\n",
|
740 |
+
" <td>82</td>\n",
|
741 |
+
" <td>0.886792</td>\n",
|
742 |
+
" <td>0.886792</td>\n",
|
743 |
+
" <td>0.886792</td>\n",
|
744 |
+
" <td>53</td>\n",
|
745 |
+
" <td>0.890511</td>\n",
|
746 |
+
" <td>0.847222</td>\n",
|
747 |
+
" <td>0.938462</td>\n",
|
748 |
+
" <td>72</td>\n",
|
749 |
+
" <td>0.727273</td>\n",
|
750 |
+
" <td>0.666667</td>\n",
|
751 |
+
" <td>0.800000</td>\n",
|
752 |
+
" <td>6</td>\n",
|
753 |
+
" <td>0.950820</td>\n",
|
754 |
+
" <td>1.000000</td>\n",
|
755 |
+
" <td>0.906250</td>\n",
|
756 |
+
" <td>29</td>\n",
|
757 |
+
" <td>0.949640</td>\n",
|
758 |
+
" <td>0.929577</td>\n",
|
759 |
+
" <td>0.970588</td>\n",
|
760 |
+
" <td>71</td>\n",
|
761 |
+
" <td>0.985075</td>\n",
|
762 |
+
" <td>1.000000</td>\n",
|
763 |
+
" <td>0.970588</td>\n",
|
764 |
+
" <td>33</td>\n",
|
765 |
+
" </tr>\n",
|
766 |
+
" <tr>\n",
|
767 |
+
" <td>5</td>\n",
|
768 |
+
" <td>0.093800</td>\n",
|
769 |
+
" <td>0.231558</td>\n",
|
770 |
+
" <td>0.895492</td>\n",
|
771 |
+
" <td>0.879276</td>\n",
|
772 |
+
" <td>0.887310</td>\n",
|
773 |
+
" <td>0.945361</td>\n",
|
774 |
+
" <td>0.833333</td>\n",
|
775 |
+
" <td>0.882353</td>\n",
|
776 |
+
" <td>0.789474</td>\n",
|
777 |
+
" <td>34</td>\n",
|
778 |
+
" <td>0.909091</td>\n",
|
779 |
+
" <td>1.000000</td>\n",
|
780 |
+
" <td>0.833333</td>\n",
|
781 |
+
" <td>5</td>\n",
|
782 |
+
" <td>0.880000</td>\n",
|
783 |
+
" <td>0.916667</td>\n",
|
784 |
+
" <td>0.846154</td>\n",
|
785 |
+
" <td>24</td>\n",
|
786 |
+
" <td>0.813559</td>\n",
|
787 |
+
" <td>0.857143</td>\n",
|
788 |
+
" <td>0.774194</td>\n",
|
789 |
+
" <td>28</td>\n",
|
790 |
+
" <td>0.888889</td>\n",
|
791 |
+
" <td>0.866667</td>\n",
|
792 |
+
" <td>0.912281</td>\n",
|
793 |
+
" <td>60</td>\n",
|
794 |
+
" <td>0.833333</td>\n",
|
795 |
+
" <td>0.792683</td>\n",
|
796 |
+
" <td>0.878378</td>\n",
|
797 |
+
" <td>82</td>\n",
|
798 |
+
" <td>0.895238</td>\n",
|
799 |
+
" <td>0.886792</td>\n",
|
800 |
+
" <td>0.903846</td>\n",
|
801 |
+
" <td>53</td>\n",
|
802 |
+
" <td>0.898551</td>\n",
|
803 |
+
" <td>0.861111</td>\n",
|
804 |
+
" <td>0.939394</td>\n",
|
805 |
+
" <td>72</td>\n",
|
806 |
+
" <td>0.727273</td>\n",
|
807 |
+
" <td>0.666667</td>\n",
|
808 |
+
" <td>0.800000</td>\n",
|
809 |
+
" <td>6</td>\n",
|
810 |
+
" <td>0.881356</td>\n",
|
811 |
+
" <td>0.896552</td>\n",
|
812 |
+
" <td>0.866667</td>\n",
|
813 |
+
" <td>29</td>\n",
|
814 |
+
" <td>0.957143</td>\n",
|
815 |
+
" <td>0.943662</td>\n",
|
816 |
+
" <td>0.971014</td>\n",
|
817 |
+
" <td>71</td>\n",
|
818 |
+
" <td>0.985075</td>\n",
|
819 |
+
" <td>1.000000</td>\n",
|
820 |
+
" <td>0.970588</td>\n",
|
821 |
+
" <td>33</td>\n",
|
822 |
+
" </tr>\n",
|
823 |
+
" </tbody>\n",
|
824 |
+
"</table><p>"
|
825 |
+
],
|
826 |
+
"text/plain": [
|
827 |
+
"<IPython.core.display.HTML object>"
|
828 |
+
]
|
829 |
+
},
|
830 |
+
"metadata": {},
|
831 |
+
"output_type": "display_data"
|
832 |
+
},
|
833 |
+
{
|
834 |
+
"name": "stderr",
|
835 |
+
"output_type": "stream",
|
836 |
+
"text": [
|
837 |
+
"The following columns in the evaluation set don't have a corresponding argument in `BertForTokenClassification.forward` and have been ignored: tokens, ids, ner_tags. If tokens, ids, ner_tags are not expected by `BertForTokenClassification.forward`, you can safely ignore this message.\n",
|
838 |
+
"***** Running Evaluation *****\n",
|
839 |
+
" Num examples = 58\n",
|
840 |
+
" Batch size = 32\n",
|
841 |
+
"/mounts/work/akoksal/anaconda3/envs/lmbias/lib/python3.9/site-packages/seqeval/metrics/v1.py:57: UndefinedMetricWarning: Precision and F-score are ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to control this behavior.\n",
|
842 |
+
" _warn_prf(average, modifier, msg_start, len(result))\n",
|
843 |
+
"Saving model checkpoint to /mounts/work/akoksal/earthquake_ner_models/checkpoint-50\n",
|
844 |
+
"Configuration saved in /mounts/work/akoksal/earthquake_ner_models/checkpoint-50/config.json\n",
|
845 |
+
"Model weights saved in /mounts/work/akoksal/earthquake_ner_models/checkpoint-50/pytorch_model.bin\n",
|
846 |
+
"tokenizer config file saved in /mounts/work/akoksal/earthquake_ner_models/checkpoint-50/tokenizer_config.json\n",
|
847 |
+
"Special tokens file saved in /mounts/work/akoksal/earthquake_ner_models/checkpoint-50/special_tokens_map.json\n",
|
848 |
+
"The following columns in the evaluation set don't have a corresponding argument in `BertForTokenClassification.forward` and have been ignored: tokens, ids, ner_tags. If tokens, ids, ner_tags are not expected by `BertForTokenClassification.forward`, you can safely ignore this message.\n",
|
849 |
+
"***** Running Evaluation *****\n",
|
850 |
+
" Num examples = 58\n",
|
851 |
+
" Batch size = 32\n",
|
852 |
+
"Saving model checkpoint to /mounts/work/akoksal/earthquake_ner_models/checkpoint-100\n",
|
853 |
+
"Configuration saved in /mounts/work/akoksal/earthquake_ner_models/checkpoint-100/config.json\n",
|
854 |
+
"Model weights saved in /mounts/work/akoksal/earthquake_ner_models/checkpoint-100/pytorch_model.bin\n",
|
855 |
+
"tokenizer config file saved in /mounts/work/akoksal/earthquake_ner_models/checkpoint-100/tokenizer_config.json\n",
|
856 |
+
"Special tokens file saved in /mounts/work/akoksal/earthquake_ner_models/checkpoint-100/special_tokens_map.json\n",
|
857 |
+
"The following columns in the evaluation set don't have a corresponding argument in `BertForTokenClassification.forward` and have been ignored: tokens, ids, ner_tags. If tokens, ids, ner_tags are not expected by `BertForTokenClassification.forward`, you can safely ignore this message.\n",
|
858 |
+
"***** Running Evaluation *****\n",
|
859 |
+
" Num examples = 58\n",
|
860 |
+
" Batch size = 32\n",
|
861 |
+
"Saving model checkpoint to /mounts/work/akoksal/earthquake_ner_models/checkpoint-150\n",
|
862 |
+
"Configuration saved in /mounts/work/akoksal/earthquake_ner_models/checkpoint-150/config.json\n",
|
863 |
+
"Model weights saved in /mounts/work/akoksal/earthquake_ner_models/checkpoint-150/pytorch_model.bin\n",
|
864 |
+
"tokenizer config file saved in /mounts/work/akoksal/earthquake_ner_models/checkpoint-150/tokenizer_config.json\n",
|
865 |
+
"Special tokens file saved in /mounts/work/akoksal/earthquake_ner_models/checkpoint-150/special_tokens_map.json\n",
|
866 |
+
"The following columns in the evaluation set don't have a corresponding argument in `BertForTokenClassification.forward` and have been ignored: tokens, ids, ner_tags. If tokens, ids, ner_tags are not expected by `BertForTokenClassification.forward`, you can safely ignore this message.\n",
|
867 |
+
"***** Running Evaluation *****\n",
|
868 |
+
" Num examples = 58\n",
|
869 |
+
" Batch size = 32\n",
|
870 |
+
"Saving model checkpoint to /mounts/work/akoksal/earthquake_ner_models/checkpoint-200\n",
|
871 |
+
"Configuration saved in /mounts/work/akoksal/earthquake_ner_models/checkpoint-200/config.json\n",
|
872 |
+
"Model weights saved in /mounts/work/akoksal/earthquake_ner_models/checkpoint-200/pytorch_model.bin\n",
|
873 |
+
"tokenizer config file saved in /mounts/work/akoksal/earthquake_ner_models/checkpoint-200/tokenizer_config.json\n",
|
874 |
+
"Special tokens file saved in /mounts/work/akoksal/earthquake_ner_models/checkpoint-200/special_tokens_map.json\n",
|
875 |
+
"Deleting older checkpoint [/mounts/work/akoksal/earthquake_ner_models/checkpoint-50] due to args.save_total_limit\n",
|
876 |
+
"The following columns in the evaluation set don't have a corresponding argument in `BertForTokenClassification.forward` and have been ignored: tokens, ids, ner_tags. If tokens, ids, ner_tags are not expected by `BertForTokenClassification.forward`, you can safely ignore this message.\n",
|
877 |
+
"***** Running Evaluation *****\n",
|
878 |
+
" Num examples = 58\n",
|
879 |
+
" Batch size = 32\n",
|
880 |
+
"Saving model checkpoint to /mounts/work/akoksal/earthquake_ner_models/checkpoint-250\n",
|
881 |
+
"Configuration saved in /mounts/work/akoksal/earthquake_ner_models/checkpoint-250/config.json\n",
|
882 |
+
"Model weights saved in /mounts/work/akoksal/earthquake_ner_models/checkpoint-250/pytorch_model.bin\n",
|
883 |
+
"tokenizer config file saved in /mounts/work/akoksal/earthquake_ner_models/checkpoint-250/tokenizer_config.json\n",
|
884 |
+
"Special tokens file saved in /mounts/work/akoksal/earthquake_ner_models/checkpoint-250/special_tokens_map.json\n",
|
885 |
+
"Deleting older checkpoint [/mounts/work/akoksal/earthquake_ner_models/checkpoint-100] due to args.save_total_limit\n",
|
886 |
+
"\n",
|
887 |
+
"\n",
|
888 |
+
"Training completed. Do not forget to share your model on huggingface.co/models =)\n",
|
889 |
+
"\n",
|
890 |
+
"\n",
|
891 |
+
"Loading best model from /mounts/work/akoksal/earthquake_ner_models/checkpoint-200 (score: 0.21532948315143585).\n"
|
892 |
+
]
|
893 |
+
},
|
894 |
+
{
|
895 |
+
"data": {
|
896 |
+
"text/plain": [
|
897 |
+
"TrainOutput(global_step=250, training_loss=0.3963502960205078, metrics={'train_runtime': 73.0701, 'train_samples_per_second': 54.674, 'train_steps_per_second': 3.421, 'total_flos': 129863927953500.0, 'train_loss': 0.3963502960205078, 'epoch': 5.0})"
|
898 |
+
]
|
899 |
+
},
|
900 |
+
"execution_count": 15,
|
901 |
+
"metadata": {},
|
902 |
+
"output_type": "execute_result"
|
903 |
+
}
|
904 |
+
],
|
905 |
+
"source": [
|
906 |
+
"trainer.train()"
|
907 |
+
]
|
908 |
+
},
|
909 |
+
{
|
910 |
+
"cell_type": "code",
|
911 |
+
"execution_count": 16,
|
912 |
+
"id": "4427c32d",
|
913 |
+
"metadata": {},
|
914 |
+
"outputs": [
|
915 |
+
{
|
916 |
+
"name": "stderr",
|
917 |
+
"output_type": "stream",
|
918 |
+
"text": [
|
919 |
+
"The following columns in the evaluation set don't have a corresponding argument in `BertForTokenClassification.forward` and have been ignored: tokens, ids, ner_tags. If tokens, ids, ner_tags are not expected by `BertForTokenClassification.forward`, you can safely ignore this message.\n",
|
920 |
+
"***** Running Evaluation *****\n",
|
921 |
+
" Num examples = 129\n",
|
922 |
+
" Batch size = 32\n"
|
923 |
+
]
|
924 |
+
},
|
925 |
+
{
|
926 |
+
"data": {
|
927 |
+
"text/html": [
|
928 |
+
"\n",
|
929 |
+
" <div>\n",
|
930 |
+
" \n",
|
931 |
+
" <progress value='5' max='5' style='width:300px; height:20px; vertical-align: middle;'></progress>\n",
|
932 |
+
" [5/5 00:00]\n",
|
933 |
+
" </div>\n",
|
934 |
+
" "
|
935 |
+
],
|
936 |
+
"text/plain": [
|
937 |
+
"<IPython.core.display.HTML object>"
|
938 |
+
]
|
939 |
+
},
|
940 |
+
"metadata": {},
|
941 |
+
"output_type": "display_data"
|
942 |
+
}
|
943 |
+
],
|
944 |
+
"source": [
|
945 |
+
"results = trainer.evaluate(tokenized_dataset[\"test\"])"
|
946 |
+
]
|
947 |
+
},
|
948 |
+
{
|
949 |
+
"cell_type": "code",
|
950 |
+
"execution_count": 24,
|
951 |
+
"id": "aabbb977",
|
952 |
+
"metadata": {},
|
953 |
+
"outputs": [
|
954 |
+
{
|
955 |
+
"data": {
|
956 |
+
"text/plain": [
|
957 |
+
"{'eval_loss': 0.24822480976581573,\n",
|
958 |
+
" 'eval_overall_precision': 0.8442211055276382,\n",
|
959 |
+
" 'eval_overall_recall': 0.877742946708464,\n",
|
960 |
+
" 'eval_overall_f1': 0.860655737704918,\n",
|
961 |
+
" 'eval_overall_accuracy': 0.9401853411962932,\n",
|
962 |
+
" 'eval_bina_f1': 0.7000000000000001,\n",
|
963 |
+
" 'eval_bina_recall': 0.7424242424242424,\n",
|
964 |
+
" 'eval_bina_precision': 0.6621621621621622,\n",
|
965 |
+
" 'eval_bina_support': 66,\n",
|
966 |
+
" 'eval_bulvar_f1': 0.9230769230769231,\n",
|
967 |
+
" 'eval_bulvar_recall': 0.9230769230769231,\n",
|
968 |
+
" 'eval_bulvar_precision': 0.9230769230769231,\n",
|
969 |
+
" 'eval_bulvar_support': 13,\n",
|
970 |
+
" 'eval_cadde_f1': 0.8067226890756302,\n",
|
971 |
+
" 'eval_cadde_recall': 0.8421052631578947,\n",
|
972 |
+
" 'eval_cadde_precision': 0.7741935483870968,\n",
|
973 |
+
" 'eval_cadde_support': 57,\n",
|
974 |
+
" 'eval_diskapino_f1': 0.7083333333333334,\n",
|
975 |
+
" 'eval_diskapino_recall': 0.7285714285714285,\n",
|
976 |
+
" 'eval_diskapino_precision': 0.6891891891891891,\n",
|
977 |
+
" 'eval_diskapino_support': 70,\n",
|
978 |
+
" 'eval_ilce_f1': 0.9218106995884773,\n",
|
979 |
+
" 'eval_ilce_recall': 0.9572649572649573,\n",
|
980 |
+
" 'eval_ilce_precision': 0.8888888888888888,\n",
|
981 |
+
" 'eval_ilce_support': 117,\n",
|
982 |
+
" 'eval_isim_f1': 0.8793103448275862,\n",
|
983 |
+
" 'eval_isim_recall': 0.9026548672566371,\n",
|
984 |
+
" 'eval_isim_precision': 0.8571428571428571,\n",
|
985 |
+
" 'eval_isim_support': 113,\n",
|
986 |
+
" 'eval_mahalle_f1': 0.7903225806451613,\n",
|
987 |
+
" 'eval_mahalle_recall': 0.8166666666666667,\n",
|
988 |
+
" 'eval_mahalle_precision': 0.765625,\n",
|
989 |
+
" 'eval_mahalle_support': 120,\n",
|
990 |
+
" 'eval_sehir_f1': 0.9724137931034483,\n",
|
991 |
+
" 'eval_sehir_recall': 0.9657534246575342,\n",
|
992 |
+
" 'eval_sehir_precision': 0.9791666666666666,\n",
|
993 |
+
" 'eval_sehir_support': 146,\n",
|
994 |
+
" 'eval_site_f1': 0.6875000000000001,\n",
|
995 |
+
" 'eval_site_recall': 0.6111111111111112,\n",
|
996 |
+
" 'eval_site_precision': 0.7857142857142857,\n",
|
997 |
+
" 'eval_site_support': 18,\n",
|
998 |
+
" 'eval_sokak_f1': 0.7301587301587302,\n",
|
999 |
+
" 'eval_sokak_recall': 0.7419354838709677,\n",
|
1000 |
+
" 'eval_sokak_precision': 0.71875,\n",
|
1001 |
+
" 'eval_sokak_support': 62,\n",
|
1002 |
+
" 'eval_soyisim_f1': 0.9441624365482234,\n",
|
1003 |
+
" 'eval_soyisim_recall': 0.9489795918367347,\n",
|
1004 |
+
" 'eval_soyisim_precision': 0.9393939393939394,\n",
|
1005 |
+
" 'eval_soyisim_support': 98,\n",
|
1006 |
+
" 'eval_telefonno_f1': 0.9935483870967742,\n",
|
1007 |
+
" 'eval_telefonno_recall': 1.0,\n",
|
1008 |
+
" 'eval_telefonno_precision': 0.9871794871794872,\n",
|
1009 |
+
" 'eval_telefonno_support': 77,\n",
|
1010 |
+
" 'eval_runtime': 0.3493,\n",
|
1011 |
+
" 'eval_samples_per_second': 369.308,\n",
|
1012 |
+
" 'eval_steps_per_second': 14.314,\n",
|
1013 |
+
" 'epoch': 5.0}"
|
1014 |
+
]
|
1015 |
+
},
|
1016 |
+
"execution_count": 24,
|
1017 |
+
"metadata": {},
|
1018 |
+
"output_type": "execute_result"
|
1019 |
+
}
|
1020 |
+
],
|
1021 |
+
"source": [
|
1022 |
+
"results"
|
1023 |
+
]
|
1024 |
+
},
|
1025 |
+
{
|
1026 |
+
"cell_type": "code",
|
1027 |
+
"execution_count": 18,
|
1028 |
+
"id": "922a7237",
|
1029 |
+
"metadata": {},
|
1030 |
+
"outputs": [
|
1031 |
+
{
|
1032 |
+
"data": {
|
1033 |
+
"text/html": [
|
1034 |
+
"<div>\n",
|
1035 |
+
"<style scoped>\n",
|
1036 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
1037 |
+
" vertical-align: middle;\n",
|
1038 |
+
" }\n",
|
1039 |
+
"\n",
|
1040 |
+
" .dataframe tbody tr th {\n",
|
1041 |
+
" vertical-align: top;\n",
|
1042 |
+
" }\n",
|
1043 |
+
"\n",
|
1044 |
+
" .dataframe thead th {\n",
|
1045 |
+
" text-align: right;\n",
|
1046 |
+
" }\n",
|
1047 |
+
"</style>\n",
|
1048 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
1049 |
+
" <thead>\n",
|
1050 |
+
" <tr style=\"text-align: right;\">\n",
|
1051 |
+
" <th></th>\n",
|
1052 |
+
" <th>support</th>\n",
|
1053 |
+
" <th>precision</th>\n",
|
1054 |
+
" <th>recall</th>\n",
|
1055 |
+
" <th>f1</th>\n",
|
1056 |
+
" <th>accuracy</th>\n",
|
1057 |
+
" </tr>\n",
|
1058 |
+
" </thead>\n",
|
1059 |
+
" <tbody>\n",
|
1060 |
+
" <tr>\n",
|
1061 |
+
" <th>overall</th>\n",
|
1062 |
+
" <td>957</td>\n",
|
1063 |
+
" <td>0.84</td>\n",
|
1064 |
+
" <td>0.88</td>\n",
|
1065 |
+
" <td>0.86</td>\n",
|
1066 |
+
" <td>0.94</td>\n",
|
1067 |
+
" </tr>\n",
|
1068 |
+
" <tr>\n",
|
1069 |
+
" <th>bina</th>\n",
|
1070 |
+
" <td>66</td>\n",
|
1071 |
+
" <td>0.66</td>\n",
|
1072 |
+
" <td>0.74</td>\n",
|
1073 |
+
" <td>0.70</td>\n",
|
1074 |
+
" <td>NaN</td>\n",
|
1075 |
+
" </tr>\n",
|
1076 |
+
" <tr>\n",
|
1077 |
+
" <th>bulvar</th>\n",
|
1078 |
+
" <td>13</td>\n",
|
1079 |
+
" <td>0.92</td>\n",
|
1080 |
+
" <td>0.92</td>\n",
|
1081 |
+
" <td>0.92</td>\n",
|
1082 |
+
" <td>NaN</td>\n",
|
1083 |
+
" </tr>\n",
|
1084 |
+
" <tr>\n",
|
1085 |
+
" <th>cadde</th>\n",
|
1086 |
+
" <td>57</td>\n",
|
1087 |
+
" <td>0.77</td>\n",
|
1088 |
+
" <td>0.84</td>\n",
|
1089 |
+
" <td>0.81</td>\n",
|
1090 |
+
" <td>NaN</td>\n",
|
1091 |
+
" </tr>\n",
|
1092 |
+
" <tr>\n",
|
1093 |
+
" <th>diskapino</th>\n",
|
1094 |
+
" <td>70</td>\n",
|
1095 |
+
" <td>0.69</td>\n",
|
1096 |
+
" <td>0.73</td>\n",
|
1097 |
+
" <td>0.71</td>\n",
|
1098 |
+
" <td>NaN</td>\n",
|
1099 |
+
" </tr>\n",
|
1100 |
+
" <tr>\n",
|
1101 |
+
" <th>ilce</th>\n",
|
1102 |
+
" <td>117</td>\n",
|
1103 |
+
" <td>0.89</td>\n",
|
1104 |
+
" <td>0.96</td>\n",
|
1105 |
+
" <td>0.92</td>\n",
|
1106 |
+
" <td>NaN</td>\n",
|
1107 |
+
" </tr>\n",
|
1108 |
+
" <tr>\n",
|
1109 |
+
" <th>isim</th>\n",
|
1110 |
+
" <td>113</td>\n",
|
1111 |
+
" <td>0.86</td>\n",
|
1112 |
+
" <td>0.90</td>\n",
|
1113 |
+
" <td>0.88</td>\n",
|
1114 |
+
" <td>NaN</td>\n",
|
1115 |
+
" </tr>\n",
|
1116 |
+
" <tr>\n",
|
1117 |
+
" <th>mahalle</th>\n",
|
1118 |
+
" <td>120</td>\n",
|
1119 |
+
" <td>0.77</td>\n",
|
1120 |
+
" <td>0.82</td>\n",
|
1121 |
+
" <td>0.79</td>\n",
|
1122 |
+
" <td>NaN</td>\n",
|
1123 |
+
" </tr>\n",
|
1124 |
+
" <tr>\n",
|
1125 |
+
" <th>sehir</th>\n",
|
1126 |
+
" <td>146</td>\n",
|
1127 |
+
" <td>0.98</td>\n",
|
1128 |
+
" <td>0.97</td>\n",
|
1129 |
+
" <td>0.97</td>\n",
|
1130 |
+
" <td>NaN</td>\n",
|
1131 |
+
" </tr>\n",
|
1132 |
+
" <tr>\n",
|
1133 |
+
" <th>site</th>\n",
|
1134 |
+
" <td>18</td>\n",
|
1135 |
+
" <td>0.79</td>\n",
|
1136 |
+
" <td>0.61</td>\n",
|
1137 |
+
" <td>0.69</td>\n",
|
1138 |
+
" <td>NaN</td>\n",
|
1139 |
+
" </tr>\n",
|
1140 |
+
" <tr>\n",
|
1141 |
+
" <th>sokak</th>\n",
|
1142 |
+
" <td>62</td>\n",
|
1143 |
+
" <td>0.72</td>\n",
|
1144 |
+
" <td>0.74</td>\n",
|
1145 |
+
" <td>0.73</td>\n",
|
1146 |
+
" <td>NaN</td>\n",
|
1147 |
+
" </tr>\n",
|
1148 |
+
" <tr>\n",
|
1149 |
+
" <th>soyisim</th>\n",
|
1150 |
+
" <td>98</td>\n",
|
1151 |
+
" <td>0.94</td>\n",
|
1152 |
+
" <td>0.95</td>\n",
|
1153 |
+
" <td>0.94</td>\n",
|
1154 |
+
" <td>NaN</td>\n",
|
1155 |
+
" </tr>\n",
|
1156 |
+
" <tr>\n",
|
1157 |
+
" <th>telefonno</th>\n",
|
1158 |
+
" <td>77</td>\n",
|
1159 |
+
" <td>0.99</td>\n",
|
1160 |
+
" <td>1.00</td>\n",
|
1161 |
+
" <td>0.99</td>\n",
|
1162 |
+
" <td>NaN</td>\n",
|
1163 |
+
" </tr>\n",
|
1164 |
+
" </tbody>\n",
|
1165 |
+
"</table>\n",
|
1166 |
+
"</div>"
|
1167 |
+
],
|
1168 |
+
"text/plain": [
|
1169 |
+
" support precision recall f1 accuracy\n",
|
1170 |
+
"overall 957 0.84 0.88 0.86 0.94\n",
|
1171 |
+
"bina 66 0.66 0.74 0.70 NaN\n",
|
1172 |
+
"bulvar 13 0.92 0.92 0.92 NaN\n",
|
1173 |
+
"cadde 57 0.77 0.84 0.81 NaN\n",
|
1174 |
+
"diskapino 70 0.69 0.73 0.71 NaN\n",
|
1175 |
+
"ilce 117 0.89 0.96 0.92 NaN\n",
|
1176 |
+
"isim 113 0.86 0.90 0.88 NaN\n",
|
1177 |
+
"mahalle 120 0.77 0.82 0.79 NaN\n",
|
1178 |
+
"sehir 146 0.98 0.97 0.97 NaN\n",
|
1179 |
+
"site 18 0.79 0.61 0.69 NaN\n",
|
1180 |
+
"sokak 62 0.72 0.74 0.73 NaN\n",
|
1181 |
+
"soyisim 98 0.94 0.95 0.94 NaN\n",
|
1182 |
+
"telefonno 77 0.99 1.00 0.99 NaN"
|
1183 |
+
]
|
1184 |
+
},
|
1185 |
+
"execution_count": 18,
|
1186 |
+
"metadata": {},
|
1187 |
+
"output_type": "execute_result"
|
1188 |
+
}
|
1189 |
+
],
|
1190 |
+
"source": [
|
1191 |
+
"structured_results = defaultdict(dict)\n",
|
1192 |
+
"structured_results[\"overall\"][\"support\"]=0\n",
|
1193 |
+
"for x, y in results.items():\n",
|
1194 |
+
" if len(x.split(\"_\"))==3:\n",
|
1195 |
+
" structured_results[x.split(\"_\")[1]][x.split(\"_\")[2]] = y\n",
|
1196 |
+
" if x.split(\"_\")[2]==\"support\":\n",
|
1197 |
+
" structured_results[\"overall\"][\"support\"]+=y\n",
|
1198 |
+
"results_pd = pd.DataFrame(structured_results).T\n",
|
1199 |
+
"results_pd.support = results_pd.support.astype(int)\n",
|
1200 |
+
"results_pd.round(2)"
|
1201 |
+
]
|
1202 |
+
},
|
1203 |
+
{
|
1204 |
+
"cell_type": "markdown",
|
1205 |
+
"id": "3c3de283",
|
1206 |
+
"metadata": {},
|
1207 |
+
"source": [
|
1208 |
+
"## Predictions"
|
1209 |
+
]
|
1210 |
+
},
|
1211 |
+
{
|
1212 |
+
"cell_type": "code",
|
1213 |
+
"execution_count": 19,
|
1214 |
+
"id": "ed165edb",
|
1215 |
+
"metadata": {},
|
1216 |
+
"outputs": [],
|
1217 |
+
"source": [
|
1218 |
+
"from transformers import pipeline\n",
|
1219 |
+
"nlp = pipeline(\"ner\", model=model.to(device), tokenizer=tokenizer, aggregation_strategy=\"first\", device=0 if device==\"cuda\" else -1)"
|
1220 |
+
]
|
1221 |
+
},
|
1222 |
+
{
|
1223 |
+
"cell_type": "code",
|
1224 |
+
"execution_count": 20,
|
1225 |
+
"id": "0e350503",
|
1226 |
+
"metadata": {},
|
1227 |
+
"outputs": [],
|
1228 |
+
"source": [
|
1229 |
+
"# Source: https://www.thepythoncode.com/article/named-entity-recognition-using-transformers-and-spacy\n",
|
1230 |
+
"def get_entities_html(text, ner_result, title=None):\n",
|
1231 |
+
" \"\"\"Visualize NER with the help of SpaCy\"\"\"\n",
|
1232 |
+
" ents = []\n",
|
1233 |
+
" for ent in ner_result:\n",
|
1234 |
+
" e = {}\n",
|
1235 |
+
" # add the start and end positions of the entity\n",
|
1236 |
+
" e[\"start\"] = ent[\"start\"]\n",
|
1237 |
+
" e[\"end\"] = ent[\"end\"]\n",
|
1238 |
+
" # add the score if you want in the label\n",
|
1239 |
+
" # e[\"label\"] = f\"{ent[\"entity\"]}-{ent['score']:.2f}\"\n",
|
1240 |
+
" e[\"label\"] = ent[\"entity_group\"]\n",
|
1241 |
+
" if ents and -1 <= ent[\"start\"] - ents[-1][\"end\"] <= 1 and ents[-1][\"label\"] == e[\"label\"]:\n",
|
1242 |
+
" # if the current entity is shared with previous entity\n",
|
1243 |
+
" # simply extend the entity end position instead of adding a new one\n",
|
1244 |
+
" ents[-1][\"end\"] = e[\"end\"]\n",
|
1245 |
+
" continue\n",
|
1246 |
+
" ents.append(e)\n",
|
1247 |
+
" # construct data required for displacy.render() method\n",
|
1248 |
+
" render_data = [\n",
|
1249 |
+
" {\n",
|
1250 |
+
" \"text\": text,\n",
|
1251 |
+
" \"ents\": ents,\n",
|
1252 |
+
" \"title\": title,\n",
|
1253 |
+
" }\n",
|
1254 |
+
" ]\n",
|
1255 |
+
" spacy.displacy.render(render_data, style=\"ent\", manual=True, jupyter=True)"
|
1256 |
+
]
|
1257 |
+
},
|
1258 |
+
{
|
1259 |
+
"cell_type": "code",
|
1260 |
+
"execution_count": 21,
|
1261 |
+
"id": "f98a6902",
|
1262 |
+
"metadata": {},
|
1263 |
+
"outputs": [
|
1264 |
+
{
|
1265 |
+
"data": {
|
1266 |
+
"text/html": [
|
1267 |
+
"<span class=\"tex2jax_ignore\"><div class=\"entities\" style=\"line-height: 2.5; direction: ltr\">Lütfen yardım \n",
|
1268 |
+
"<mark class=\"entity\" style=\"background: #ddd; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
|
1269 |
+
" Akevler\n",
|
1270 |
+
" <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">mahalle</span>\n",
|
1271 |
+
"</mark>\n",
|
1272 |
+
" mahallesi \n",
|
1273 |
+
"<mark class=\"entity\" style=\"background: #ddd; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
|
1274 |
+
" Rüzgar\n",
|
1275 |
+
" <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">sokak</span>\n",
|
1276 |
+
"</mark>\n",
|
1277 |
+
" sokak \n",
|
1278 |
+
"<mark class=\"entity\" style=\"background: #ddd; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
|
1279 |
+
" Tuncay\n",
|
1280 |
+
" <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">bina</span>\n",
|
1281 |
+
"</mark>\n",
|
1282 |
+
" apartmanı zemin kat \n",
|
1283 |
+
"<mark class=\"entity\" style=\"background: #ddd; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
|
1284 |
+
" Antakya\n",
|
1285 |
+
" <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">ilce</span>\n",
|
1286 |
+
"</mark>\n",
|
1287 |
+
" akrabalarım göçük altında #hatay #Afad</div></span>"
|
1288 |
+
],
|
1289 |
+
"text/plain": [
|
1290 |
+
"<IPython.core.display.HTML object>"
|
1291 |
+
]
|
1292 |
+
},
|
1293 |
+
"metadata": {},
|
1294 |
+
"output_type": "display_data"
|
1295 |
+
}
|
1296 |
+
],
|
1297 |
+
"source": [
|
1298 |
+
"sentence = \"\"\"Lütfen yardım Akevler mahallesi Rüzgar sokak Tuncay apartmanı zemin kat Antakya akrabalarım göçük altında #hatay #Afad\"\"\"\n",
|
1299 |
+
"\n",
|
1300 |
+
"get_entities_html(sentence, nlp(sentence))"
|
1301 |
+
]
|
1302 |
+
},
|
1303 |
+
{
|
1304 |
+
"cell_type": "code",
|
1305 |
+
"execution_count": 22,
|
1306 |
+
"id": "80b823ff",
|
1307 |
+
"metadata": {},
|
1308 |
+
"outputs": [
|
1309 |
+
{
|
1310 |
+
"data": {
|
1311 |
+
"text/html": [
|
1312 |
+
"<span class=\"tex2jax_ignore\"><div class=\"entities\" style=\"line-height: 2.5; direction: ltr\">\n",
|
1313 |
+
"<mark class=\"entity\" style=\"background: #ddd; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
|
1314 |
+
" Kahramanmaraş\n",
|
1315 |
+
" <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">sehir</span>\n",
|
1316 |
+
"</mark>\n",
|
1317 |
+
" \n",
|
1318 |
+
"<mark class=\"entity\" style=\"background: #ddd; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
|
1319 |
+
" merkez\n",
|
1320 |
+
" <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">ilce</span>\n",
|
1321 |
+
"</mark>\n",
|
1322 |
+
" \n",
|
1323 |
+
"<mark class=\"entity\" style=\"background: #ddd; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
|
1324 |
+
" Şazibey\n",
|
1325 |
+
" <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">mahalle</span>\n",
|
1326 |
+
"</mark>\n",
|
1327 |
+
" Mahallesi \n",
|
1328 |
+
"<mark class=\"entity\" style=\"background: #ddd; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
|
1329 |
+
" Ebrar\n",
|
1330 |
+
" <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">site</span>\n",
|
1331 |
+
"</mark>\n",
|
1332 |
+
" Sitesi \n",
|
1333 |
+
"<mark class=\"entity\" style=\"background: #ddd; padding: 0.45em 0.6em; margin: 0 0.25em; line-height: 1; border-radius: 0.35em;\">\n",
|
1334 |
+
" Z\n",
|
1335 |
+
" <span style=\"font-size: 0.8em; font-weight: bold; line-height: 1; border-radius: 0.35em; vertical-align: middle; margin-left: 0.5rem\">bina</span>\n",
|
1336 |
+
"</mark>\n",
|
1337 |
+
" blok arka tarafı için acil en az 150 tonluk vinç lazım lütfen paylaşır mısınız</div></span>"
|
1338 |
+
],
|
1339 |
+
"text/plain": [
|
1340 |
+
"<IPython.core.display.HTML object>"
|
1341 |
+
]
|
1342 |
+
},
|
1343 |
+
"metadata": {},
|
1344 |
+
"output_type": "display_data"
|
1345 |
+
}
|
1346 |
+
],
|
1347 |
+
"source": [
|
1348 |
+
"sentence = \" \".join(dataset[\"train\"][433][\"tokens\"])\n",
|
1349 |
+
"get_entities_html(sentence, nlp(sentence))"
|
1350 |
+
]
|
1351 |
+
}
|
1352 |
+
],
|
1353 |
+
"metadata": {
|
1354 |
+
"kernelspec": {
|
1355 |
+
"display_name": "Python 3 (ipykernel)",
|
1356 |
+
"language": "python",
|
1357 |
+
"name": "python3"
|
1358 |
+
},
|
1359 |
+
"language_info": {
|
1360 |
+
"codemirror_mode": {
|
1361 |
+
"name": "ipython",
|
1362 |
+
"version": 3
|
1363 |
+
},
|
1364 |
+
"file_extension": ".py",
|
1365 |
+
"mimetype": "text/x-python",
|
1366 |
+
"name": "python",
|
1367 |
+
"nbconvert_exporter": "python",
|
1368 |
+
"pygments_lexer": "ipython3",
|
1369 |
+
"version": "3.9.12"
|
1370 |
+
}
|
1371 |
+
},
|
1372 |
+
"nbformat": 4,
|
1373 |
+
"nbformat_minor": 5
|
1374 |
+
}
|