File size: 4,772 Bytes
38ca175 034ea23 38ca175 034ea23 38ca175 034ea23 38ca175 034ea23 38ca175 034ea23 38ca175 4d5187e 034ea23 38ca175 034ea23 38ca175 034ea23 38ca175 034ea23 38ca175 034ea23 38ca175 034ea23 38ca175 034ea23 38ca175 034ea23 38ca175 034ea23 38ca175 034ea23 38ca175 034ea23 38ca175 034ea23 38ca175 034ea23 38ca175 034ea23 38ca175 034ea23 38ca175 034ea23 38ca175 034ea23 38ca175 034ea23 38ca175 034ea23 38ca175 034ea23 38ca175 034ea23 38ca175 034ea23 38ca175 034ea23 38ca175 034ea23 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 |
---
library_name: transformers
tags:
- depth
- absolute depth
pipeline_tag: depth-estimation
---
# Depth Anything V2 (Fine-tuned for Metric Depth Estimation) - Transformers Version
This model represents a fine-tuned version of [Depth Anything V2](https://huggingface.co/depth-anything/Depth-Anything-V2-Large-hf) for indoor metric depth estimation using the synthetic Hypersim datasets.
The model checkpoint is compatible with the transformers library.
Depth Anything V2 was introduced in [the paper of the same name](https://arxiv.org/abs/2406.09414) by Lihe Yang et al. It uses the same architecture as the original Depth Anything release but employs synthetic data and a larger capacity teacher model to achieve much finer and robust depth predictions. This fine-tuned version for metric depth estimation was first released in [this repository](https://github.com/DepthAnything/Depth-Anything-V2).
**Six metric depth models** of three scales for indoor and outdoor scenes, respectively, were released and are available:
| Base Model | Params | Indoor (Hypersim) | Outdoor (Virtual KITTI 2) |
|:-|-:|:-:|:-:|
| Depth-Anything-V2-Small | 24.8M | [Model Card](https://huggingface.co/depth-anything/Depth-Anything-V2-Metric-Indoor-Small-hf) | [Model Card](https://huggingface.co/depth-anything/Depth-Anything-V2-Metric-Outdoor-Small-hf) |
| Depth-Anything-V2-Base | 97.5M | [Model Card](https://huggingface.co/depth-anything/Depth-Anything-V2-Metric-Indoor-Base-hf) | [Model Card](https://huggingface.co/depth-anything/Depth-Anything-V2-Metric-Outdoor-Base-hf) |
| Depth-Anything-V2-Large | 335.3M | [Model Card](https://huggingface.co/depth-anything/Depth-Anything-V2-Metric-Indoor-Large-hf) | [Model Card](https://huggingface.co/depth-anything/Depth-Anything-V2-Metric-Outdoor-Large-hf) |
## Model description
Depth Anything V2 leverages the [DPT](https://huggingface.co/docs/transformers/model_doc/dpt) architecture with a [DINOv2](https://huggingface.co/docs/transformers/model_doc/dinov2) backbone.
The model is trained on ~600K synthetic labeled images and ~62 million real unlabeled images, obtaining state-of-the-art results for both relative and absolute depth estimation.
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/model_doc/depth_anything_overview.jpg"
alt="drawing" width="600"/>
<small> Depth Anything overview. Taken from the <a href="https://arxiv.org/abs/2401.10891">original paper</a>.</small>
## Intended uses & limitations
You can use the raw model for tasks like zero-shot depth estimation. See the [model hub](https://huggingface.co/models?search=depth-anything) to look for
other versions on a task that interests you.
### How to use
Here is how to use this model to perform zero-shot depth estimation:
```python
from transformers import pipeline
from PIL import Image
import requests
# load pipe
pipe = pipeline(task="depth-estimation", model="depth-anything/Depth-Anything-V2-Metric-Indoor-Small-hf")
# load image
url = 'http://images.cocodataset.org/val2017/000000039769.jpg'
image = Image.open(requests.get(url, stream=True).raw)
# inference
depth = pipe(image)["depth"]
```
Alternatively, you can use the model and processor classes:
```python
from transformers import AutoImageProcessor, AutoModelForDepthEstimation
import torch
import numpy as np
from PIL import Image
import requests
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image = Image.open(requests.get(url, stream=True).raw)
image_processor = AutoImageProcessor.from_pretrained("depth-anything/Depth-Anything-V2-Metric-Indoor-Small-hf")
model = AutoModelForDepthEstimation.from_pretrained("depth-anything/Depth-Anything-V2-Metric-Indoor-Small-hf")
# prepare image for the model
inputs = image_processor(images=image, return_tensors="pt")
with torch.no_grad():
outputs = model(**inputs)
predicted_depth = outputs.predicted_depth
# interpolate to original size
prediction = torch.nn.functional.interpolate(
predicted_depth.unsqueeze(1),
size=image.size[::-1],
mode="bicubic",
align_corners=False,
)
```
For more code examples, please refer to the [documentation](https://huggingface.co/transformers/main/model_doc/depth_anything.html#).
## Citation
```bibtex
@article{depth_anything_v2,
title={Depth Anything V2},
author={Yang, Lihe and Kang, Bingyi and Huang, Zilong and Zhao, Zhen and Xu, Xiaogang and Feng, Jiashi and Zhao, Hengshuang},
journal={arXiv:2406.09414},
year={2024}
}
@inproceedings{depth_anything_v1,
title={Depth Anything: Unleashing the Power of Large-Scale Unlabeled Data},
author={Yang, Lihe and Kang, Bingyi and Huang, Zilong and Xu, Xiaogang and Feng, Jiashi and Zhao, Hengshuang},
booktitle={CVPR},
year={2024}
}
``` |