Model save
Browse files
README.md
CHANGED
@@ -23,7 +23,7 @@ model-index:
|
|
23 |
metrics:
|
24 |
- name: Accuracy
|
25 |
type: accuracy
|
26 |
-
value: 0.
|
27 |
---
|
28 |
|
29 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -33,8 +33,8 @@ should probably proofread and complete it, then remove this comment. -->
|
|
33 |
|
34 |
This model is a fine-tuned version of [microsoft/cvt-13](https://huggingface.co/microsoft/cvt-13) on the imagefolder dataset.
|
35 |
It achieves the following results on the evaluation set:
|
36 |
-
- Loss:
|
37 |
-
- Accuracy: 0.
|
38 |
|
39 |
## Model description
|
40 |
|
@@ -53,7 +53,7 @@ More information needed
|
|
53 |
### Training hyperparameters
|
54 |
|
55 |
The following hyperparameters were used during training:
|
56 |
-
- learning_rate:
|
57 |
- train_batch_size: 128
|
58 |
- eval_batch_size: 128
|
59 |
- seed: 42
|
@@ -62,32 +62,112 @@ The following hyperparameters were used during training:
|
|
62 |
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
63 |
- lr_scheduler_type: linear
|
64 |
- lr_scheduler_warmup_ratio: 0.1
|
65 |
-
- num_epochs:
|
66 |
|
67 |
### Training results
|
68 |
|
69 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
70 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
71 |
-
| No log | 1.0 | 7 |
|
72 |
-
|
|
73 |
-
|
|
74 |
-
|
|
75 |
-
|
|
76 |
-
|
|
77 |
-
|
|
78 |
-
|
|
79 |
-
|
|
80 |
-
|
|
81 |
-
|
|
82 |
-
|
|
83 |
-
|
|
84 |
-
|
|
85 |
-
|
|
86 |
-
|
|
87 |
-
|
|
88 |
-
|
|
89 |
-
|
|
90 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
|
92 |
|
93 |
### Framework versions
|
|
|
23 |
metrics:
|
24 |
- name: Accuracy
|
25 |
type: accuracy
|
26 |
+
value: 0.7954939341421143
|
27 |
---
|
28 |
|
29 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
33 |
|
34 |
This model is a fine-tuned version of [microsoft/cvt-13](https://huggingface.co/microsoft/cvt-13) on the imagefolder dataset.
|
35 |
It achieves the following results on the evaluation set:
|
36 |
+
- Loss: 0.8635
|
37 |
+
- Accuracy: 0.7955
|
38 |
|
39 |
## Model description
|
40 |
|
|
|
53 |
### Training hyperparameters
|
54 |
|
55 |
The following hyperparameters were used during training:
|
56 |
+
- learning_rate: 0.0003
|
57 |
- train_batch_size: 128
|
58 |
- eval_batch_size: 128
|
59 |
- seed: 42
|
|
|
62 |
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
63 |
- lr_scheduler_type: linear
|
64 |
- lr_scheduler_warmup_ratio: 0.1
|
65 |
+
- num_epochs: 100
|
66 |
|
67 |
### Training results
|
68 |
|
69 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
70 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
71 |
+
| No log | 1.0 | 7 | 1.0210 | 0.7106 |
|
72 |
+
| 5.5642 | 2.0 | 14 | 1.0072 | 0.7097 |
|
73 |
+
| 5.662 | 3.0 | 21 | 1.0151 | 0.7088 |
|
74 |
+
| 5.662 | 4.0 | 28 | 1.0016 | 0.7140 |
|
75 |
+
| 5.381 | 5.0 | 35 | 1.0119 | 0.7123 |
|
76 |
+
| 5.3348 | 6.0 | 42 | 0.9662 | 0.7201 |
|
77 |
+
| 5.3348 | 7.0 | 49 | 0.9514 | 0.7262 |
|
78 |
+
| 5.2423 | 8.0 | 56 | 0.9589 | 0.7106 |
|
79 |
+
| 5.0251 | 9.0 | 63 | 0.9090 | 0.7279 |
|
80 |
+
| 5.0547 | 10.0 | 70 | 0.9352 | 0.7123 |
|
81 |
+
| 5.0547 | 11.0 | 77 | 1.0063 | 0.6993 |
|
82 |
+
| 4.8246 | 12.0 | 84 | 0.9191 | 0.7106 |
|
83 |
+
| 4.7811 | 13.0 | 91 | 0.9947 | 0.7123 |
|
84 |
+
| 4.7811 | 14.0 | 98 | 0.9671 | 0.7175 |
|
85 |
+
| 4.8234 | 15.0 | 105 | 0.9055 | 0.7236 |
|
86 |
+
| 4.4787 | 16.0 | 112 | 0.8838 | 0.7444 |
|
87 |
+
| 4.4787 | 17.0 | 119 | 0.9059 | 0.7296 |
|
88 |
+
| 4.39 | 18.0 | 126 | 0.8640 | 0.7461 |
|
89 |
+
| 4.1424 | 19.0 | 133 | 0.8661 | 0.7487 |
|
90 |
+
| 4.1065 | 20.0 | 140 | 0.9057 | 0.7305 |
|
91 |
+
| 4.1065 | 21.0 | 147 | 0.8865 | 0.7348 |
|
92 |
+
| 4.0844 | 22.0 | 154 | 0.8928 | 0.7392 |
|
93 |
+
| 3.9835 | 23.0 | 161 | 0.8675 | 0.7539 |
|
94 |
+
| 3.9835 | 24.0 | 168 | 0.8829 | 0.7556 |
|
95 |
+
| 3.8199 | 25.0 | 175 | 0.8177 | 0.7617 |
|
96 |
+
| 3.7898 | 26.0 | 182 | 0.8886 | 0.7461 |
|
97 |
+
| 3.7898 | 27.0 | 189 | 0.9395 | 0.7461 |
|
98 |
+
| 3.7734 | 28.0 | 196 | 0.8348 | 0.7608 |
|
99 |
+
| 3.7835 | 29.0 | 203 | 0.8369 | 0.7574 |
|
100 |
+
| 3.6414 | 30.0 | 210 | 0.8668 | 0.7660 |
|
101 |
+
| 3.6414 | 31.0 | 217 | 0.8909 | 0.7600 |
|
102 |
+
| 3.5076 | 32.0 | 224 | 0.8795 | 0.7496 |
|
103 |
+
| 3.5447 | 33.0 | 231 | 0.9228 | 0.7539 |
|
104 |
+
| 3.5447 | 34.0 | 238 | 0.8850 | 0.7522 |
|
105 |
+
| 3.5344 | 35.0 | 245 | 0.8585 | 0.7652 |
|
106 |
+
| 3.3678 | 36.0 | 252 | 0.8631 | 0.7574 |
|
107 |
+
| 3.3678 | 37.0 | 259 | 0.8676 | 0.7704 |
|
108 |
+
| 3.4061 | 38.0 | 266 | 0.9131 | 0.7617 |
|
109 |
+
| 3.3177 | 39.0 | 273 | 0.8631 | 0.7678 |
|
110 |
+
| 3.2767 | 40.0 | 280 | 0.8802 | 0.7643 |
|
111 |
+
| 3.2767 | 41.0 | 287 | 0.8518 | 0.7678 |
|
112 |
+
| 3.1992 | 42.0 | 294 | 0.9232 | 0.7574 |
|
113 |
+
| 3.2743 | 43.0 | 301 | 0.9306 | 0.7522 |
|
114 |
+
| 3.2743 | 44.0 | 308 | 0.8420 | 0.7756 |
|
115 |
+
| 3.1704 | 45.0 | 315 | 0.8802 | 0.7565 |
|
116 |
+
| 3.2466 | 46.0 | 322 | 0.8782 | 0.7678 |
|
117 |
+
| 3.2466 | 47.0 | 329 | 0.8444 | 0.7747 |
|
118 |
+
| 3.0879 | 48.0 | 336 | 0.8579 | 0.7695 |
|
119 |
+
| 3.1677 | 49.0 | 343 | 0.8584 | 0.7712 |
|
120 |
+
| 3.0965 | 50.0 | 350 | 0.8401 | 0.7756 |
|
121 |
+
| 3.0965 | 51.0 | 357 | 0.8724 | 0.7652 |
|
122 |
+
| 3.0611 | 52.0 | 364 | 0.8638 | 0.7808 |
|
123 |
+
| 3.0204 | 53.0 | 371 | 0.9167 | 0.7660 |
|
124 |
+
| 3.0204 | 54.0 | 378 | 0.8322 | 0.7738 |
|
125 |
+
| 2.9704 | 55.0 | 385 | 0.8577 | 0.7643 |
|
126 |
+
| 2.939 | 56.0 | 392 | 0.8297 | 0.7860 |
|
127 |
+
| 2.939 | 57.0 | 399 | 0.8746 | 0.7686 |
|
128 |
+
| 3.0341 | 58.0 | 406 | 0.8620 | 0.7825 |
|
129 |
+
| 2.8997 | 59.0 | 413 | 0.8835 | 0.7574 |
|
130 |
+
| 3.0187 | 60.0 | 420 | 0.9018 | 0.7695 |
|
131 |
+
| 3.0187 | 61.0 | 427 | 0.8940 | 0.7773 |
|
132 |
+
| 2.9316 | 62.0 | 434 | 0.8859 | 0.7712 |
|
133 |
+
| 2.8746 | 63.0 | 441 | 0.8661 | 0.7764 |
|
134 |
+
| 2.8746 | 64.0 | 448 | 0.8916 | 0.7712 |
|
135 |
+
| 2.817 | 65.0 | 455 | 0.8645 | 0.7782 |
|
136 |
+
| 2.7593 | 66.0 | 462 | 0.8829 | 0.7686 |
|
137 |
+
| 2.7593 | 67.0 | 469 | 0.8883 | 0.7790 |
|
138 |
+
| 2.9212 | 68.0 | 476 | 0.8507 | 0.7825 |
|
139 |
+
| 2.8659 | 69.0 | 483 | 0.8554 | 0.7877 |
|
140 |
+
| 2.9068 | 70.0 | 490 | 0.8813 | 0.7764 |
|
141 |
+
| 2.9068 | 71.0 | 497 | 0.8555 | 0.7860 |
|
142 |
+
| 2.8334 | 72.0 | 504 | 0.8666 | 0.7790 |
|
143 |
+
| 2.7322 | 73.0 | 511 | 0.8682 | 0.7825 |
|
144 |
+
| 2.7322 | 74.0 | 518 | 0.8816 | 0.7886 |
|
145 |
+
| 2.8548 | 75.0 | 525 | 0.8523 | 0.7903 |
|
146 |
+
| 2.8696 | 76.0 | 532 | 0.8509 | 0.7894 |
|
147 |
+
| 2.8696 | 77.0 | 539 | 0.8683 | 0.7808 |
|
148 |
+
| 2.6439 | 78.0 | 546 | 0.8607 | 0.7877 |
|
149 |
+
| 2.9039 | 79.0 | 553 | 0.8698 | 0.7842 |
|
150 |
+
| 2.6338 | 80.0 | 560 | 0.8718 | 0.7877 |
|
151 |
+
| 2.6338 | 81.0 | 567 | 0.8371 | 0.7903 |
|
152 |
+
| 2.7271 | 82.0 | 574 | 0.8427 | 0.7929 |
|
153 |
+
| 2.7555 | 83.0 | 581 | 0.8622 | 0.7938 |
|
154 |
+
| 2.7555 | 84.0 | 588 | 0.8769 | 0.7860 |
|
155 |
+
| 2.7702 | 85.0 | 595 | 0.8844 | 0.7860 |
|
156 |
+
| 2.8678 | 86.0 | 602 | 0.8882 | 0.7825 |
|
157 |
+
| 2.8678 | 87.0 | 609 | 0.8716 | 0.7825 |
|
158 |
+
| 2.6334 | 88.0 | 616 | 0.8782 | 0.7782 |
|
159 |
+
| 2.7782 | 89.0 | 623 | 0.8752 | 0.7808 |
|
160 |
+
| 2.5527 | 90.0 | 630 | 0.8675 | 0.7808 |
|
161 |
+
| 2.5527 | 91.0 | 637 | 0.8735 | 0.7842 |
|
162 |
+
| 2.6812 | 92.0 | 644 | 0.8650 | 0.7886 |
|
163 |
+
| 2.6167 | 93.0 | 651 | 0.8531 | 0.7946 |
|
164 |
+
| 2.6167 | 94.0 | 658 | 0.8699 | 0.7868 |
|
165 |
+
| 2.6553 | 95.0 | 665 | 0.8667 | 0.7894 |
|
166 |
+
| 2.7758 | 96.0 | 672 | 0.8650 | 0.7920 |
|
167 |
+
| 2.7758 | 97.0 | 679 | 0.8685 | 0.7903 |
|
168 |
+
| 2.6592 | 98.0 | 686 | 0.8592 | 0.7886 |
|
169 |
+
| 2.5202 | 99.0 | 693 | 0.8745 | 0.7894 |
|
170 |
+
| 2.6577 | 100.0 | 700 | 0.8635 | 0.7955 |
|
171 |
|
172 |
|
173 |
### Framework versions
|