PhilipMay commited on
Commit
c928d32
·
1 Parent(s): 31be271

update readme

Browse files
Files changed (1) hide show
  1. README.md +24 -114
README.md CHANGED
@@ -1,135 +1,45 @@
1
  ---
2
  pipeline_tag: sentence-similarity
 
 
3
  tags:
4
  - sentence-transformers
5
- - feature-extraction
6
  - sentence-similarity
7
  - transformers
 
 
 
 
8
 
9
  ---
10
 
11
- # {MODEL_NAME}
12
-
13
- This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 1024 dimensional dense vector space and can be used for tasks like clustering or semantic search.
14
-
15
- <!--- Describe your model here -->
16
-
17
- ## Usage (Sentence-Transformers)
18
-
19
- Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
20
-
21
- ```
22
- pip install -U sentence-transformers
23
- ```
24
-
25
- Then you can use the model like this:
26
-
27
- ```python
28
- from sentence_transformers import SentenceTransformer
29
- sentences = ["This is an example sentence", "Each sentence is converted"]
30
-
31
- model = SentenceTransformer('{MODEL_NAME}')
32
- embeddings = model.encode(sentences)
33
- print(embeddings)
34
- ```
35
-
36
-
37
-
38
- ## Usage (HuggingFace Transformers)
39
- Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
40
-
41
- ```python
42
- from transformers import AutoTokenizer, AutoModel
43
- import torch
44
-
45
-
46
- #Mean Pooling - Take attention mask into account for correct averaging
47
- def mean_pooling(model_output, attention_mask):
48
- token_embeddings = model_output[0] #First element of model_output contains all token embeddings
49
- input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
50
- return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
51
-
52
-
53
- # Sentences we want sentence embeddings for
54
- sentences = ['This is an example sentence', 'Each sentence is converted']
55
-
56
- # Load model from HuggingFace Hub
57
- tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}')
58
- model = AutoModel.from_pretrained('{MODEL_NAME}')
59
-
60
- # Tokenize sentences
61
- encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
62
-
63
- # Compute token embeddings
64
- with torch.no_grad():
65
- model_output = model(**encoded_input)
66
-
67
- # Perform pooling. In this case, mean pooling.
68
- sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
69
-
70
- print("Sentence embeddings:")
71
- print(sentence_embeddings)
72
- ```
73
-
74
-
75
-
76
- ## Evaluation Results
77
-
78
- <!--- Describe how your model was evaluated -->
79
-
80
- For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
81
 
 
 
82
 
83
  ## Training
84
- The model was trained with the parameters:
85
 
86
- **DataLoader**:
87
-
88
- `torch.utils.data.dataloader.DataLoader` of length 44527 with parameters:
89
- ```
90
- {'batch_size': 68, 'sampler': 'torch.utils.data.dataloader._InfiniteConstantSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
91
- ```
92
-
93
- **Loss**:
94
-
95
- `sentence_transformers.losses.BatchHardSoftMarginTripletLoss.BatchHardSoftMarginTripletLoss`
96
-
97
- Parameters of the fit()-Method:
98
- ```
99
- {
100
- "epochs": 7,
101
- "evaluation_steps": 8905,
102
- "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator",
103
- "max_grad_norm": 1,
104
- "optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
105
- "optimizer_params": {
106
- "lr": 5.5512022294147105e-06
107
- },
108
- "scheduler": "WarmupLinear",
109
- "steps_per_epoch": null,
110
- "warmup_steps": 93507,
111
- "weight_decay": 0.01
112
- }
113
- ```
114
-
115
-
116
- ## Full Model Architecture
117
- ```
118
- SentenceTransformer(
119
- (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
120
- (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
121
- )
122
- ```
123
-
124
- ## Citing & Authors
125
 
126
- <!--- Describe where people can find more information -->
 
 
 
 
 
127
 
128
  ## Licensing
129
-
130
  Copyright (c) 2023 [Philip May](https://may.la/), [Deutsche Telekom AG](https://www.telekom.com/)\
131
  Copyright (c) 2022 [deepset GmbH](https://www.deepset.ai/)
132
 
133
  Licensed under the **MIT License** (the "License"); you may not use this file except in compliance with the License.
134
  You may obtain a copy of the License by reviewing the file
135
- [LICENSE]() in the repository.
 
1
  ---
2
  pipeline_tag: sentence-similarity
3
+ language:
4
+ - de
5
  tags:
6
  - sentence-transformers
 
7
  - sentence-similarity
8
  - transformers
9
+ - setfit
10
+ license: mit
11
+ datasets:
12
+ - deutsche-telekom/ger-backtrans-paraphrase
13
 
14
  ---
15
 
16
+ # German BERT large paraphrase cosine
17
+ This is a [sentence-transformers](https://www.SBERT.net) model:
18
+ It maps sentences & paragraphs (text) into a 1024 dimensional dense vector space.
19
+ The model is intended to be used together with [SetFit](https://github.com/huggingface/setfit)
20
+ to improve German few-shot text classification.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21
 
22
+ This model is based on [deepset/gbert-large](https://huggingface.co/deepset/gbert-large).
23
+ Many thanks to [deepset](https://www.deepset.ai/)!
24
 
25
  ## Training
26
+ TODO
27
 
28
+ ## Evaluation Results
29
+ We use the [NLU Few-shot Benchmark - English and German](https://huggingface.co/datasets/deutsche-telekom/NLU-few-shot-benchmark-en-de)
30
+ dataset to evaluate this model in a German few-shot scenario.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31
 
32
+ **Qualitative results**
33
+ - multilingual sentence embeddings provide the worst results
34
+ - Electra models also deliver poor results
35
+ - German BERT base size model ([deepset/gbert-base](https://huggingface.co/deepset/gbert-base)) provides good results
36
+ - German BERT large size model ([deepset/gbert-large](https://huggingface.co/deepset/gbert-large)) provides very good results
37
+ - our fine-tuned models (this model and [deutsche-telekom/gbert-large-paraphrase-cosine](https://huggingface.co/deutsche-telekom/gbert-large-paraphrase-cosine)) provide best results
38
 
39
  ## Licensing
 
40
  Copyright (c) 2023 [Philip May](https://may.la/), [Deutsche Telekom AG](https://www.telekom.com/)\
41
  Copyright (c) 2022 [deepset GmbH](https://www.deepset.ai/)
42
 
43
  Licensed under the **MIT License** (the "License"); you may not use this file except in compliance with the License.
44
  You may obtain a copy of the License by reviewing the file
45
+ [LICENSE](https://huggingface.co/deutsche-telekom/gbert-large-paraphrase-cosine/blob/main/LICENSE) in the repository.