dev-cuai commited on
Commit
cdb6c6e
·
1 Parent(s): a1756c7

Upload PPO FrozenLake-v1 trained agent

Browse files
FrozenLake-v1.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8ed5e8365d6a05d4adb6928a11c2915737d9645245c0f64e4d8ff93b9889dc28
3
+ size 160023
FrozenLake-v1/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.2.1
FrozenLake-v1/data ADDED
@@ -0,0 +1,109 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fbee3b0f9a0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fbee3b0fa30>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fbee3b0fac0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fbee3b0fb50>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fbee3b0fbe0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fbee3b0fc70>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fbee3b0fd00>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fbee3b0fd90>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fbee3b0fe20>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fbee3b0feb0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fbee3b0ff40>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fbee3b20040>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7fbee3b24680>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 20480,
25
+ "_total_timesteps": 20000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1703242849395841595,
30
+ "learning_rate": 0.003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVewAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYIAAAAAAAAAAQAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBhZSMAUOUdJRSlC4="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": 4,
44
+ "_current_progress_remaining": -0.02400000000000002,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHP/AAAAAAAACMAWyUSwqMAXSUR0BFdhVU+9rXdX2UKGgGRz/wAAAAAAAAaAdLCGgIR0BFdoP07KaHdX2UKGgGRz/wAAAAAAAAaAdLE2gIR0BFd4Qz1scidX2UKGgGRz/wAAAAAAAAaAdLCmgIR0BFeBGYrrgPdX2UKGgGRz/wAAAAAAAAaAdLB2gIR0BFeHL7oB7vdX2UKGgGRz/wAAAAAAAAaAdLE2gIR0BFeW9+PRzBdX2UKGgGRz/wAAAAAAAAaAdLDWgIR0BFei48U21ldX2UKGgGRz/wAAAAAAAAaAdLDGgIR0BFev1L8JlbdX2UKGgGRz/wAAAAAAAAaAdLDmgIR0BFe+qR2bG4dX2UKGgGRz/wAAAAAAAAaAdLDGgIR0BFfKhDgIhRdX2UKGgGRz/wAAAAAAAAaAdLCWgIR0BFfRzaK1ohdX2UKGgGRz/wAAAAAAAAaAdLCWgIR0BFfZQP7N0OdX2UKGgGRz/wAAAAAAAAaAdLBmgIR0BFfedsi0OWdX2UKGgGRz/wAAAAAAAAaAdLDmgIR0BFfsYEW69TdX2UKGgGRz/wAAAAAAAAaAdLDGgIR0BFf2q94/u9dX2UKGgGRz/wAAAAAAAAaAdLC2gIR0BFf/+KjzqbdX2UKGgGRz/wAAAAAAAAaAdLDGgIR0BFgLK3d9DydX2UKGgGRz/wAAAAAAAAaAdLD2gIR0BFgX3QD3dsdX2UKGgGRz/wAAAAAAAAaAdLBmgIR0BFgdGy5Zr6dX2UKGgGRz/wAAAAAAAAaAdLEWgIR0BFgp4SpR4ydX2UKGgGRz/wAAAAAAAAaAdLDWgIR0BFg0X531SPdX2UKGgGRz/wAAAAAAAAaAdLBmgIR0BFg5e7cwg1dX2UKGgGRz/wAAAAAAAAaAdLC2gIR0BFhB+nZTQ3dX2UKGgGRz/wAAAAAAAAaAdLDGgIR0BFhMSkCV8kdX2UKGgGRz/wAAAAAAAAaAdLCGgIR0BFhVD0Dlo2dX2UKGgGRz/wAAAAAAAAaAdLEGgIR0BFhlM7EHdHdX2UKGgGRz/wAAAAAAAAaAdLDGgIR0BFhxCQcPvsdX2UKGgGRz/wAAAAAAAAaAdLDWgIR0BFh7dBSk0rdX2UKGgGRz/wAAAAAAAAaAdLFGgIR0BFiNQTEit8dX2UKGgGRz/wAAAAAAAAaAdLCGgIR0BFiUXgtOEedX2UKGgGRz/wAAAAAAAAaAdLCGgIR0BFia7EpAlfdX2UKGgGRz/wAAAAAAAAaAdLCGgIR0BFiiCz1K5DdX2UKGgGRz/wAAAAAAAAaAdLDGgIR0BFirZ8KG+LdX2UKGgGRz/wAAAAAAAAaAdLEWgIR0BFi4oJAt4BdX2UKGgGRz/wAAAAAAAAaAdLB2gIR0BFi+6RQrMDdX2UKGgGRz/wAAAAAAAAaAdLB2gIR0BFjFIEr5IpdX2UKGgGRz/wAAAAAAAAaAdLB2gIR0BFjK0lZ5iWdX2UKGgGRz/wAAAAAAAAaAdLB2gIR0BFjQRXfZVXdX2UKGgGRz/wAAAAAAAAaAdLDGgIR0BFjeFtbcGkdX2UKGgGRz/wAAAAAAAAaAdLB2gIR0BFjliKBNEgdX2UKGgGRz/wAAAAAAAAaAdLEGgIR0BFj1+I/JNkdX2UKGgGRz/wAAAAAAAAaAdLCGgIR0BFj+HBUJfIdX2UKGgGRz/wAAAAAAAAaAdLDGgIR0BFkKSPluFYdX2UKGgGRz/wAAAAAAAAaAdLDGgIR0BFkWj4593KdX2UKGgGRz/wAAAAAAAAaAdLDWgIR0BFkjnV5KODdX2UKGgGRz/wAAAAAAAAaAdLCGgIR0BFkr2xptaZdX2UKGgGRz/wAAAAAAAAaAdLEGgIR0BFk7+T/yXldX2UKGgGRz/wAAAAAAAAaAdLCWgIR0BFlD15B1LbdX2UKGgGRwAAAAAAAAAAaAdLCmgIR0BFlMGX5WRzdX2UKGgGRz/wAAAAAAAAaAdLDGgIR0BFlVkMCtA+dX2UKGgGRz/wAAAAAAAAaAdLEmgIR0BFljc/MW43dX2UKGgGRz/wAAAAAAAAaAdLDmgIR0BFluMl1KXfdX2UKGgGRz/wAAAAAAAAaAdLCWgIR0BFl1ObiIcjdX2UKGgGRz/wAAAAAAAAaAdLB2gIR0BFl7B42S+ydX2UKGgGRz/wAAAAAAAAaAdLCGgIR0BFmB/RVp9JdX2UKGgGRz/wAAAAAAAAaAdLB2gIR0BFmHbItDlYdX2UKGgGRz/wAAAAAAAAaAdLCGgIR0BFmNjCpFTedX2UKGgGRz/wAAAAAAAAaAdLDGgIR0BFmWs7uDzzdX2UKGgGRz/wAAAAAAAAaAdLCmgIR0BFmfBWPtD2dX2UKGgGRz/wAAAAAAAAaAdLCGgIR0BFmlyJbdJrdX2UKGgGRz/wAAAAAAAAaAdLB2gIR0BFm7p/wy6+dX2UKGgGRz/wAAAAAAAAaAdLCGgIR0BFnEy+HrQgdX2UKGgGRz/wAAAAAAAAaAdLG2gIR0BFnhInSfDldX2UKGgGRz/wAAAAAAAAaAdLDGgIR0BFnsP8Q7LddX2UKGgGRz/wAAAAAAAAaAdLCGgIR0BFnywnpjc3dX2UKGgGRz/wAAAAAAAAaAdLDmgIR0BFn98Rcu8LdX2UKGgGRz/wAAAAAAAAaAdLC2gIR0BFoHj6vaDgdX2UKGgGRz/wAAAAAAAAaAdLCGgIR0BFoOMdcSoPdX2UKGgGRz/wAAAAAAAAaAdLEGgIR0BFoa4MF2V3dX2UKGgGRz/wAAAAAAAAaAdLBmgIR0BFofzBhx5tdX2UKGgGRz/wAAAAAAAAaAdLDWgIR0BFotLteD3/dX2UKGgGRwAAAAAAAAAAaAdLBmgIR0BFoyeyzHCGdX2UKGgGRwAAAAAAAAAAaAdLBmgIR0BFo3gUDdP+dX2UKGgGRz/wAAAAAAAAaAdLDGgIR0BFpC1JDmbLdX2UKGgGRz/wAAAAAAAAaAdLDWgIR0BFpNsFdLQHdX2UKGgGRz/wAAAAAAAAaAdLBmgIR0BFpSjpLVWkdX2UKGgGRz/wAAAAAAAAaAdLDWgIR0BFpdCNS619dX2UKGgGRz/wAAAAAAAAaAdLDGgIR0BFpmdqcmShdX2UKGgGRz/wAAAAAAAAaAdLCWgIR0BFpuARTS9edX2UKGgGRz/wAAAAAAAAaAdLB2gIR0BFpz6rNnoQdX2UKGgGRz/wAAAAAAAAaAdLDGgIR0BFp9LpRoAXdX2UKGgGRz/wAAAAAAAAaAdLB2gIR0BFqCwbEP1+dX2UKGgGRz/wAAAAAAAAaAdLCGgIR0BFqJN9H+ZPdX2UKGgGRwAAAAAAAAAAaAdLBWgIR0BFqO6/Zdv9dX2UKGgGRz/wAAAAAAAAaAdLCWgIR0BFqYPXkHUudX2UKGgGRz/wAAAAAAAAaAdLBmgIR0BFqenIhhYvdX2UKGgGRz/wAAAAAAAAaAdLCGgIR0BFqm3OObRXdX2UKGgGRz/wAAAAAAAAaAdLEmgIR0BFq4sNDtw8dX2UKGgGRz/wAAAAAAAAaAdLEmgIR0BFrLhrFfiQdX2UKGgGRz/wAAAAAAAAaAdLCGgIR0BFrT7uUliSdX2UKGgGRz/wAAAAAAAAaAdLEWgIR0BFrk/bCaZydX2UKGgGRz/wAAAAAAAAaAdLDGgIR0BFrxJ2+wkgdX2UKGgGRz/wAAAAAAAAaAdLCmgIR0BFr7UXpGF0dX2UKGgGRwAAAAAAAAAAaAdLB2gIR0BFsCBXjlxPdX2UKGgGRz/wAAAAAAAAaAdLB2gIR0BFsHlXA/LUdX2UKGgGRz/wAAAAAAAAaAdLB2gIR0BFsNF8XvYwdX2UKGgGRz/wAAAAAAAAaAdLBmgIR0BFsSI55qubdX2UKGgGRz/wAAAAAAAAaAdLCGgIR0BFsYg7o0Q9dX2UKGgGRz/wAAAAAAAAaAdLBmgIR0BFsdOh0yP/dX2UKGgGRz/wAAAAAAAAaAdLCGgIR0BFsjsMRYigdWUu"
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 900,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
57
+ ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIEAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "n": "16",
59
+ "start": "0",
60
+ "_shape": [],
61
+ "dtype": "int64",
62
+ "_np_random": null
63
+ },
64
+ "action_space": {
65
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
66
+ ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=",
67
+ "n": "4",
68
+ "start": "0",
69
+ "_shape": [],
70
+ "dtype": "int64",
71
+ "_np_random": null
72
+ },
73
+ "n_envs": 1,
74
+ "n_steps": 2048,
75
+ "gamma": 0.9999,
76
+ "gae_lambda": 0.99,
77
+ "ent_coef": 0.0001,
78
+ "vf_coef": 0.02,
79
+ "max_grad_norm": 0.5,
80
+ "rollout_buffer_class": {
81
+ ":type:": "<class 'abc.ABCMeta'>",
82
+ ":serialized:": "gAWVNgAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwNUm9sbG91dEJ1ZmZlcpSTlC4=",
83
+ "__module__": "stable_baselines3.common.buffers",
84
+ "__annotations__": "{'observations': <class 'numpy.ndarray'>, 'actions': <class 'numpy.ndarray'>, 'rewards': <class 'numpy.ndarray'>, 'advantages': <class 'numpy.ndarray'>, 'returns': <class 'numpy.ndarray'>, 'episode_starts': <class 'numpy.ndarray'>, 'log_probs': <class 'numpy.ndarray'>, 'values': <class 'numpy.ndarray'>}",
85
+ "__doc__": "\n Rollout buffer used in on-policy algorithms like A2C/PPO.\n It corresponds to ``buffer_size`` transitions collected\n using the current policy.\n This experience will be discarded after the policy update.\n In order to use PPO objective, we also store the current value of each state\n and the log probability of each taken action.\n\n The term rollout here refers to the model-free notion and should not\n be used with the concept of rollout used in model-based RL or planning.\n Hence, it is only involved in policy and value function training but not action selection.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param gae_lambda: Factor for trade-off of bias vs variance for Generalized Advantage Estimator\n Equivalent to classic advantage when set to 1.\n :param gamma: Discount factor\n :param n_envs: Number of parallel environments\n ",
86
+ "__init__": "<function RolloutBuffer.__init__ at 0x7fbee3cc1900>",
87
+ "reset": "<function RolloutBuffer.reset at 0x7fbee3cc1990>",
88
+ "compute_returns_and_advantage": "<function RolloutBuffer.compute_returns_and_advantage at 0x7fbee3cc1a20>",
89
+ "add": "<function RolloutBuffer.add at 0x7fbee3cc1ab0>",
90
+ "get": "<function RolloutBuffer.get at 0x7fbee3cc1b40>",
91
+ "_get_samples": "<function RolloutBuffer._get_samples at 0x7fbee3cc1bd0>",
92
+ "__abstractmethods__": "frozenset()",
93
+ "_abc_impl": "<_abc._abc_data object at 0x7fbee3cbd5c0>"
94
+ },
95
+ "rollout_buffer_kwargs": {},
96
+ "batch_size": 128,
97
+ "n_epochs": 90,
98
+ "clip_range": {
99
+ ":type:": "<class 'function'>",
100
+ ":serialized:": "gAWVkAIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXi9ob21lL3VidW50dS9hbmFjb25kYTMvZW52cy9pYzEvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UaAx1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgefZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/wzMzMzMzM4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
101
+ },
102
+ "clip_range_vf": null,
103
+ "normalize_advantage": true,
104
+ "target_kl": null,
105
+ "lr_schedule": {
106
+ ":type:": "<class 'function'>",
107
+ ":serialized:": "gAWVkAIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXi9ob21lL3VidW50dS9hbmFjb25kYTMvZW52cy9pYzEvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UaAx1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgefZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/aJN0vGp++oWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
108
+ }
109
+ }
FrozenLake-v1/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1fe1e6ecd8f167928533348171563c97fc8dae6a74372449c243ddc3f90a78e8
3
+ size 96170
FrozenLake-v1/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1548d40da1a145cd29984fffc4f933784b4f5bfaf2d00c3cf0dda1672a75607b
3
+ size 47730
FrozenLake-v1/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
FrozenLake-v1/system_info.txt ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.133.1-microsoft-standard-WSL2-x86_64-with-glibc2.35 # 1 SMP Thu Oct 5 21:02:42 UTC 2023
2
+ - Python: 3.10.13
3
+ - Stable-Baselines3: 2.2.1
4
+ - PyTorch: 2.1.0
5
+ - GPU Enabled: False
6
+ - Numpy: 1.26.2
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - FrozenLake-v1
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: FrozenLake-v1
16
+ type: FrozenLake-v1
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 1.00 +/- 0.00
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **FrozenLake-v1**
25
+ This is a trained model of a **PPO** agent playing **FrozenLake-v1**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fbee3b0f9a0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fbee3b0fa30>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fbee3b0fac0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fbee3b0fb50>", "_build": "<function ActorCriticPolicy._build at 0x7fbee3b0fbe0>", "forward": "<function ActorCriticPolicy.forward at 0x7fbee3b0fc70>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fbee3b0fd00>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fbee3b0fd90>", "_predict": "<function ActorCriticPolicy._predict at 0x7fbee3b0fe20>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fbee3b0feb0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fbee3b0ff40>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fbee3b20040>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fbee3b24680>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 20480, "_total_timesteps": 20000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1703242849395841595, "learning_rate": 0.003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVewAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYIAAAAAAAAAAQAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBhZSMAUOUdJRSlC4="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": 4, "_current_progress_remaining": -0.02400000000000002, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHP/AAAAAAAACMAWyUSwqMAXSUR0BFdhVU+9rXdX2UKGgGRz/wAAAAAAAAaAdLCGgIR0BFdoP07KaHdX2UKGgGRz/wAAAAAAAAaAdLE2gIR0BFd4Qz1scidX2UKGgGRz/wAAAAAAAAaAdLCmgIR0BFeBGYrrgPdX2UKGgGRz/wAAAAAAAAaAdLB2gIR0BFeHL7oB7vdX2UKGgGRz/wAAAAAAAAaAdLE2gIR0BFeW9+PRzBdX2UKGgGRz/wAAAAAAAAaAdLDWgIR0BFei48U21ldX2UKGgGRz/wAAAAAAAAaAdLDGgIR0BFev1L8JlbdX2UKGgGRz/wAAAAAAAAaAdLDmgIR0BFe+qR2bG4dX2UKGgGRz/wAAAAAAAAaAdLDGgIR0BFfKhDgIhRdX2UKGgGRz/wAAAAAAAAaAdLCWgIR0BFfRzaK1ohdX2UKGgGRz/wAAAAAAAAaAdLCWgIR0BFfZQP7N0OdX2UKGgGRz/wAAAAAAAAaAdLBmgIR0BFfedsi0OWdX2UKGgGRz/wAAAAAAAAaAdLDmgIR0BFfsYEW69TdX2UKGgGRz/wAAAAAAAAaAdLDGgIR0BFf2q94/u9dX2UKGgGRz/wAAAAAAAAaAdLC2gIR0BFf/+KjzqbdX2UKGgGRz/wAAAAAAAAaAdLDGgIR0BFgLK3d9DydX2UKGgGRz/wAAAAAAAAaAdLD2gIR0BFgX3QD3dsdX2UKGgGRz/wAAAAAAAAaAdLBmgIR0BFgdGy5Zr6dX2UKGgGRz/wAAAAAAAAaAdLEWgIR0BFgp4SpR4ydX2UKGgGRz/wAAAAAAAAaAdLDWgIR0BFg0X531SPdX2UKGgGRz/wAAAAAAAAaAdLBmgIR0BFg5e7cwg1dX2UKGgGRz/wAAAAAAAAaAdLC2gIR0BFhB+nZTQ3dX2UKGgGRz/wAAAAAAAAaAdLDGgIR0BFhMSkCV8kdX2UKGgGRz/wAAAAAAAAaAdLCGgIR0BFhVD0Dlo2dX2UKGgGRz/wAAAAAAAAaAdLEGgIR0BFhlM7EHdHdX2UKGgGRz/wAAAAAAAAaAdLDGgIR0BFhxCQcPvsdX2UKGgGRz/wAAAAAAAAaAdLDWgIR0BFh7dBSk0rdX2UKGgGRz/wAAAAAAAAaAdLFGgIR0BFiNQTEit8dX2UKGgGRz/wAAAAAAAAaAdLCGgIR0BFiUXgtOEedX2UKGgGRz/wAAAAAAAAaAdLCGgIR0BFia7EpAlfdX2UKGgGRz/wAAAAAAAAaAdLCGgIR0BFiiCz1K5DdX2UKGgGRz/wAAAAAAAAaAdLDGgIR0BFirZ8KG+LdX2UKGgGRz/wAAAAAAAAaAdLEWgIR0BFi4oJAt4BdX2UKGgGRz/wAAAAAAAAaAdLB2gIR0BFi+6RQrMDdX2UKGgGRz/wAAAAAAAAaAdLB2gIR0BFjFIEr5IpdX2UKGgGRz/wAAAAAAAAaAdLB2gIR0BFjK0lZ5iWdX2UKGgGRz/wAAAAAAAAaAdLB2gIR0BFjQRXfZVXdX2UKGgGRz/wAAAAAAAAaAdLDGgIR0BFjeFtbcGkdX2UKGgGRz/wAAAAAAAAaAdLB2gIR0BFjliKBNEgdX2UKGgGRz/wAAAAAAAAaAdLEGgIR0BFj1+I/JNkdX2UKGgGRz/wAAAAAAAAaAdLCGgIR0BFj+HBUJfIdX2UKGgGRz/wAAAAAAAAaAdLDGgIR0BFkKSPluFYdX2UKGgGRz/wAAAAAAAAaAdLDGgIR0BFkWj4593KdX2UKGgGRz/wAAAAAAAAaAdLDWgIR0BFkjnV5KODdX2UKGgGRz/wAAAAAAAAaAdLCGgIR0BFkr2xptaZdX2UKGgGRz/wAAAAAAAAaAdLEGgIR0BFk7+T/yXldX2UKGgGRz/wAAAAAAAAaAdLCWgIR0BFlD15B1LbdX2UKGgGRwAAAAAAAAAAaAdLCmgIR0BFlMGX5WRzdX2UKGgGRz/wAAAAAAAAaAdLDGgIR0BFlVkMCtA+dX2UKGgGRz/wAAAAAAAAaAdLEmgIR0BFljc/MW43dX2UKGgGRz/wAAAAAAAAaAdLDmgIR0BFluMl1KXfdX2UKGgGRz/wAAAAAAAAaAdLCWgIR0BFl1ObiIcjdX2UKGgGRz/wAAAAAAAAaAdLB2gIR0BFl7B42S+ydX2UKGgGRz/wAAAAAAAAaAdLCGgIR0BFmB/RVp9JdX2UKGgGRz/wAAAAAAAAaAdLB2gIR0BFmHbItDlYdX2UKGgGRz/wAAAAAAAAaAdLCGgIR0BFmNjCpFTedX2UKGgGRz/wAAAAAAAAaAdLDGgIR0BFmWs7uDzzdX2UKGgGRz/wAAAAAAAAaAdLCmgIR0BFmfBWPtD2dX2UKGgGRz/wAAAAAAAAaAdLCGgIR0BFmlyJbdJrdX2UKGgGRz/wAAAAAAAAaAdLB2gIR0BFm7p/wy6+dX2UKGgGRz/wAAAAAAAAaAdLCGgIR0BFnEy+HrQgdX2UKGgGRz/wAAAAAAAAaAdLG2gIR0BFnhInSfDldX2UKGgGRz/wAAAAAAAAaAdLDGgIR0BFnsP8Q7LddX2UKGgGRz/wAAAAAAAAaAdLCGgIR0BFnywnpjc3dX2UKGgGRz/wAAAAAAAAaAdLDmgIR0BFn98Rcu8LdX2UKGgGRz/wAAAAAAAAaAdLC2gIR0BFoHj6vaDgdX2UKGgGRz/wAAAAAAAAaAdLCGgIR0BFoOMdcSoPdX2UKGgGRz/wAAAAAAAAaAdLEGgIR0BFoa4MF2V3dX2UKGgGRz/wAAAAAAAAaAdLBmgIR0BFofzBhx5tdX2UKGgGRz/wAAAAAAAAaAdLDWgIR0BFotLteD3/dX2UKGgGRwAAAAAAAAAAaAdLBmgIR0BFoyeyzHCGdX2UKGgGRwAAAAAAAAAAaAdLBmgIR0BFo3gUDdP+dX2UKGgGRz/wAAAAAAAAaAdLDGgIR0BFpC1JDmbLdX2UKGgGRz/wAAAAAAAAaAdLDWgIR0BFpNsFdLQHdX2UKGgGRz/wAAAAAAAAaAdLBmgIR0BFpSjpLVWkdX2UKGgGRz/wAAAAAAAAaAdLDWgIR0BFpdCNS619dX2UKGgGRz/wAAAAAAAAaAdLDGgIR0BFpmdqcmShdX2UKGgGRz/wAAAAAAAAaAdLCWgIR0BFpuARTS9edX2UKGgGRz/wAAAAAAAAaAdLB2gIR0BFpz6rNnoQdX2UKGgGRz/wAAAAAAAAaAdLDGgIR0BFp9LpRoAXdX2UKGgGRz/wAAAAAAAAaAdLB2gIR0BFqCwbEP1+dX2UKGgGRz/wAAAAAAAAaAdLCGgIR0BFqJN9H+ZPdX2UKGgGRwAAAAAAAAAAaAdLBWgIR0BFqO6/Zdv9dX2UKGgGRz/wAAAAAAAAaAdLCWgIR0BFqYPXkHUudX2UKGgGRz/wAAAAAAAAaAdLBmgIR0BFqenIhhYvdX2UKGgGRz/wAAAAAAAAaAdLCGgIR0BFqm3OObRXdX2UKGgGRz/wAAAAAAAAaAdLEmgIR0BFq4sNDtw8dX2UKGgGRz/wAAAAAAAAaAdLEmgIR0BFrLhrFfiQdX2UKGgGRz/wAAAAAAAAaAdLCGgIR0BFrT7uUliSdX2UKGgGRz/wAAAAAAAAaAdLEWgIR0BFrk/bCaZydX2UKGgGRz/wAAAAAAAAaAdLDGgIR0BFrxJ2+wkgdX2UKGgGRz/wAAAAAAAAaAdLCmgIR0BFr7UXpGF0dX2UKGgGRwAAAAAAAAAAaAdLB2gIR0BFsCBXjlxPdX2UKGgGRz/wAAAAAAAAaAdLB2gIR0BFsHlXA/LUdX2UKGgGRz/wAAAAAAAAaAdLB2gIR0BFsNF8XvYwdX2UKGgGRz/wAAAAAAAAaAdLBmgIR0BFsSI55qubdX2UKGgGRz/wAAAAAAAAaAdLCGgIR0BFsYg7o0Q9dX2UKGgGRz/wAAAAAAAAaAdLBmgIR0BFsdOh0yP/dX2UKGgGRz/wAAAAAAAAaAdLCGgIR0BFsjsMRYigdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 900, "observation_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIEAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "16", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "n_steps": 2048, "gamma": 0.9999, "gae_lambda": 0.99, "ent_coef": 0.0001, "vf_coef": 0.02, "max_grad_norm": 0.5, "rollout_buffer_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVNgAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwNUm9sbG91dEJ1ZmZlcpSTlC4=", "__module__": "stable_baselines3.common.buffers", "__annotations__": "{'observations': <class 'numpy.ndarray'>, 'actions': <class 'numpy.ndarray'>, 'rewards': <class 'numpy.ndarray'>, 'advantages': <class 'numpy.ndarray'>, 'returns': <class 'numpy.ndarray'>, 'episode_starts': <class 'numpy.ndarray'>, 'log_probs': <class 'numpy.ndarray'>, 'values': <class 'numpy.ndarray'>}", "__doc__": "\n Rollout buffer used in on-policy algorithms like A2C/PPO.\n It corresponds to ``buffer_size`` transitions collected\n using the current policy.\n This experience will be discarded after the policy update.\n In order to use PPO objective, we also store the current value of each state\n and the log probability of each taken action.\n\n The term rollout here refers to the model-free notion and should not\n be used with the concept of rollout used in model-based RL or planning.\n Hence, it is only involved in policy and value function training but not action selection.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param gae_lambda: Factor for trade-off of bias vs variance for Generalized Advantage Estimator\n Equivalent to classic advantage when set to 1.\n :param gamma: Discount factor\n :param n_envs: Number of parallel environments\n ", "__init__": "<function RolloutBuffer.__init__ at 0x7fbee3cc1900>", "reset": "<function RolloutBuffer.reset at 0x7fbee3cc1990>", "compute_returns_and_advantage": "<function RolloutBuffer.compute_returns_and_advantage at 0x7fbee3cc1a20>", "add": "<function RolloutBuffer.add at 0x7fbee3cc1ab0>", "get": "<function RolloutBuffer.get at 0x7fbee3cc1b40>", "_get_samples": "<function RolloutBuffer._get_samples at 0x7fbee3cc1bd0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fbee3cbd5c0>"}, "rollout_buffer_kwargs": {}, "batch_size": 128, "n_epochs": 90, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVkAIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXi9ob21lL3VidW50dS9hbmFjb25kYTMvZW52cy9pYzEvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UaAx1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgefZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/wzMzMzMzM4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVkAIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXi9ob21lL3VidW50dS9hbmFjb25kYTMvZW52cy9pYzEvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UaAx1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgefZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/aJN0vGp++oWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "system_info": {"OS": "Linux-5.15.133.1-microsoft-standard-WSL2-x86_64-with-glibc2.35 # 1 SMP Thu Oct 5 21:02:42 UTC 2023", "Python": "3.10.13", "Stable-Baselines3": "2.2.1", "PyTorch": "2.1.0", "GPU Enabled": "False", "Numpy": "1.26.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1"}}
replay.mp4 ADDED
Binary file (369 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 1.0, "std_reward": 0.0, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-12-22T20:01:39.934176"}