devshaheen commited on
Commit
ff0c9e9
·
verified ·
1 Parent(s): fb9c721

updated readme

Browse files
Files changed (1) hide show
  1. README.md +75 -5
README.md CHANGED
@@ -6,17 +6,87 @@ tags:
6
  - unsloth
7
  - llama
8
  - trl
 
 
9
  license: apache-2.0
10
  language:
11
  - en
 
 
 
 
12
  ---
13
 
14
- # Uploaded model
 
 
15
 
16
  - **Developed by:** devshaheen
17
- - **License:** apache-2.0
18
- - **Finetuned from model :** unsloth/llama-3.2-3b-instruct-bnb-4bit
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19
 
20
- This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
 
 
 
21
 
22
- [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
 
 
 
 
 
6
  - unsloth
7
  - llama
8
  - trl
9
+ - multilingual
10
+ - instruction-tuning
11
  license: apache-2.0
12
  language:
13
  - en
14
+ - kn
15
+ datasets:
16
+ - charanhu/kannada-instruct-dataset-390k
17
+ library_name: transformers
18
  ---
19
 
20
+ # Uploaded Model: devshaheen/llama-3.2-3b-Instruct-finetune
21
+
22
+ ## Overview
23
 
24
  - **Developed by:** devshaheen
25
+ - **License:** Apache-2.0
26
+ - **Finetuned from model:** `unsloth/llama-3.2-3b-instruct-bnb-4bit`
27
+ - **Languages Supported:**
28
+ - **English** (`en`) for general-purpose text generation and instruction-following tasks.
29
+ - **Kannada** (`kn`) with a focus on localized and culturally aware text generation.
30
+ - **Dataset Used:** [charanhu/kannada-instruct-dataset-390k](https://huggingface.co/datasets/charanhu/kannada-instruct-dataset-390k)
31
+
32
+ This model is a fine-tuned version of LLaMA, optimized for multilingual instruction-following tasks with a specific emphasis on English and Kannada. It utilizes 4-bit quantization for efficient deployment in low-resource environments without compromising performance.
33
+
34
+ ---
35
+
36
+ ## Features
37
+
38
+ ### 1. **Instruction Tuning**
39
+ The model is trained to follow a wide range of instructions and generate contextually relevant responses. It excels in both creative and factual text generation tasks.
40
+
41
+ ### 2. **Multilingual Support**
42
+ The model is capable of generating text in Kannada and English, making it suitable for users requiring bilingual capabilities.
43
+
44
+ ### 3. **Optimized Training**
45
+ Training was accelerated using [Unsloth](https://github.com/unslothai/unsloth), achieving **2x faster training** compared to conventional methods. This was complemented by HuggingFace's TRL (Transformers Reinforcement Learning) library to ensure high performance.
46
+
47
+ ### 4. **Efficiency through Quantization**
48
+ Built on the `bnb-4bit` quantized model, it is designed for optimal performance in environments with limited computational resources while maintaining precision and depth in output.
49
+
50
+ ---
51
+
52
+ ## Usage Scenarios
53
+
54
+ ### General Use
55
+ - Text completion and creative writing.
56
+ - Generating instructions or following queries in English and Kannada.
57
+
58
+ ### Specialized Applications
59
+ - Localized AI systems in Kannada for chatbots, educational tools, and more.
60
+ - Research and development on multilingual instruction-tuned models.
61
+
62
+ ---
63
+
64
+ ## Performance and Metrics
65
+
66
+ ### Evaluation Dataset:
67
+ The model was fine-tuned on [charanhu/kannada-instruct-dataset-390k](https://huggingface.co/datasets/charanhu/kannada-instruct-dataset-390k), a comprehensive dataset designed for Kannada instruction tuning.
68
+
69
+ ### Training Parameters:
70
+ - **Base Model:** LLaMA 3.2-3B-Instruct
71
+ - **Optimizer:** AdamW
72
+ - **Quantization:** 4-bit (bnb-4bit)
73
+ - **Framework:** HuggingFace Transformers + Unsloth
74
+
75
+ ---
76
+
77
+ ## Example Usage
78
+
79
+ ### Python Code
80
+ ```python
81
+ from transformers import AutoModelForCausalLM, AutoTokenizer
82
 
83
+ # Load model and tokenizer
84
+ model_name = "devshaheen/llama-3.2-3b-Instruct-finetune"
85
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
86
+ model = AutoModelForCausalLM.from_pretrained(model_name)
87
 
88
+ # Generate text
89
+ input_text = "How does climate change affect the monsoon in Karnataka?"
90
+ inputs = tokenizer(input_text, return_tensors="pt")
91
+ outputs = model.generate(**inputs, max_length=150)
92
+ print(tokenizer.decode(outputs[0], skip_special_tokens=True))