File size: 8,765 Bytes
a53ef18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
import os
import torch
from transformers import AutoModelForSequenceClassification, AutoTokenizer
from onnxruntime.quantization import quantize_dynamic, quantize_static, QuantType
from onnxruntime.quantization.calibrate import CalibrationDataReader
import onnx
import time
import numpy as np

def ensure_directory(path):
    """Create directory if it doesn't exist"""
    abs_path = os.path.abspath(path)
    if not os.path.exists(abs_path):
        os.makedirs(abs_path)
        print(f"Created directory: {abs_path}")
    return abs_path

def verify_file_exists(file_path, timeout=5):
    """Verify that a file exists and is not empty"""
    start_time = time.time()
    while time.time() - start_time < timeout:
        if os.path.exists(file_path) and os.path.getsize(file_path) > 0:
            return True
        time.sleep(0.1)
    return False

def export_to_onnx(model, tokenizer, save_path):
    """Export model to ONNX format"""
    try:
        # Create a dummy input for the model
        dummy_input = tokenizer("This is a sample input", return_tensors="pt")

        # Export the model to ONNX
        torch.onnx.export(
            model,
            (dummy_input["input_ids"], dummy_input["attention_mask"]),
            save_path,
            opset_version=14,
            input_names=["input_ids", "attention_mask"],
            output_names=["output"],
            dynamic_axes={
                "input_ids": {0: "batch_size"},
                "attention_mask": {0: "batch_size"},
                "output": {0: "batch_size"}
            }
        )

        # Verify the file was created
        if verify_file_exists(save_path):
            print(f"Successfully exported ONNX model to {save_path}")
            return True
        else:
            print(f"Failed to verify ONNX model at {save_path}")
            return False
    except Exception as e:
        print(f"Error exporting to ONNX: {str(e)}")
        return False

def create_calibration_dataset(tokenizer, max_length=512):
    """Generate calibration dataset for static quantization with padding"""
    samples = [
        "This is an English sentence.",
        "Dies ist ein deutscher Satz.",
        "C'est une phrase française.",
        "Esta es una frase en español.",
        "这是一个中文句子。",
        "これは日本語の文章です。"
    ]

    # Tokenize with padding and truncation
    encoded_samples = []
    for text in samples:
        encoded = tokenizer(
            text,
            padding='max_length',
            max_length=max_length,
            truncation=True,
            return_tensors="pt"
        )
        encoded_samples.append({
            'input_ids': encoded['input_ids'],
            'attention_mask': encoded['attention_mask']
        })

    return encoded_samples

class CalibrationLoader(CalibrationDataReader):
    def __init__(self, calibration_data):
        self.calibration_data = calibration_data
        self.current_index = 0

    def get_next(self):
        if self.current_index >= len(self.calibration_data):
            return None

        current_data = self.calibration_data[self.current_index]
        self.current_index += 1

        # Ensure we're returning numpy arrays with the correct shape
        return {
            'input_ids': current_data['input_ids'].numpy(),
            'attention_mask': current_data['attention_mask'].numpy()
        }

    def rewind(self):
        self.current_index = 0

def export_to_onnx(model, tokenizer, save_path, max_length=512):
    """Export model to ONNX format with fixed dimensions"""
    try:
        # Create a dummy input with fixed dimensions
        dummy_input = tokenizer(
            "This is a sample input",
            padding='max_length',
            max_length=max_length,
            truncation=True,
            return_tensors="pt"
        )

        # Export the model to ONNX
        torch.onnx.export(
            model,
            (dummy_input["input_ids"], dummy_input["attention_mask"]),
            save_path,
            opset_version=14,
            input_names=["input_ids", "attention_mask"],
            output_names=["output"],
            dynamic_axes={
                "input_ids": {0: "batch_size"},
                "attention_mask": {0: "batch_size"}
            }
        )

        if verify_file_exists(save_path):
            print(f"Successfully exported ONNX model to {save_path}")
            return True
        else:
            print(f"Failed to verify ONNX model at {save_path}")
            return False
    except Exception as e:
        print(f"Error exporting to ONNX: {str(e)}")
        return False

def quantize_model(base_onnx_path, onnx_dir, config_name, calibration_dataset=None):
    """
    Quantize ONNX model using either dynamic or static quantization.

    Args:
        base_onnx_path (str): Path to the base ONNX model
        onnx_dir (str): Directory to save quantized models
        config_name (str): Type of quantization ('dynamic' or 'static')
        calibration_dataset (list, optional): Dataset for static quantization calibration
    """
    try:
        quantized_model_path = os.path.join(onnx_dir, f"model_{config_name}_quantized.onnx")

        if config_name == "dynamic":
            print(f"\nPerforming dynamic quantization...")
            quantize_dynamic(
                model_input=base_onnx_path,
                model_output=quantized_model_path,
                weight_type=QuantType.QUInt8
            )

        elif config_name == "static" and calibration_dataset is not None:
            print(f"\nPerforming static quantization...")
            calibration_loader = CalibrationLoader(calibration_dataset)
            quantize_static(
                model_input=base_onnx_path,
                model_output=quantized_model_path,
                calibration_data_reader=calibration_loader,
                quant_format=QuantType.QUInt8
            )

        else:
            print(f"Invalid quantization configuration: {config_name}")
            return False

        # Verify the quantized model exists
        if verify_file_exists(quantized_model_path):
            print(f"Successfully created {config_name} quantized model at {quantized_model_path}")

            # Print file sizes for comparison
            base_size = os.path.getsize(base_onnx_path) / (1024 * 1024)  # Convert to MB
            quantized_size = os.path.getsize(quantized_model_path) / (1024 * 1024)  # Convert to MB

            print(f"Original model size: {base_size:.2f} MB")
            print(f"Quantized model size: {quantized_size:.2f} MB")
            print(f"Size reduction: {((base_size - quantized_size) / base_size * 100):.2f}%")

            return True
        else:
            print(f"Failed to verify quantized model at {quantized_model_path}")
            return False

    except Exception as e:
        print(f"Error during {config_name} quantization: {str(e)}")
        return False


def main():
    # Get absolute paths
    current_dir = os.path.abspath(os.getcwd())
    onnx_dir = ensure_directory(os.path.join(current_dir, "onnx"))
    base_onnx_path = os.path.join(onnx_dir, "model.onnx")

    print(f"Working directory: {current_dir}")
    print(f"ONNX directory: {onnx_dir}")
    print(f"Base ONNX model path: {base_onnx_path}")

    # Step 1: Load model and tokenizer
    print("\nLoading model and tokenizer...")
    model_name = "alexneakameni/language_detection"
    model = AutoModelForSequenceClassification.from_pretrained(model_name)
    tokenizer = AutoTokenizer.from_pretrained(model_name)

    # Get the model's default max_length
    max_length = tokenizer.model_max_length

    # Step 2: Export base ONNX model
    if not export_to_onnx(model, tokenizer, base_onnx_path, max_length):
        print("Failed to export base ONNX model. Exiting.")
        return

    # Verify the ONNX model
    try:
        print(f"Verifying ONNX model at: {base_onnx_path}")
        onnx_model = onnx.load(base_onnx_path)
        print("Successfully verified ONNX model")
    except Exception as e:
        print(f"Error verifying ONNX model: {str(e)}")
        return

    # Step 3: Create calibration dataset
    calibration_dataset = create_calibration_dataset(tokenizer, max_length)

    # Step 4: Create quantized versions
    print("\nCreating quantized versions...")

    # Dynamic quantization
    quantize_model(
        base_onnx_path=base_onnx_path,
        onnx_dir=onnx_dir,
        config_name="dynamic"
    )

    # Static quantization
    quantize_model(
        base_onnx_path=base_onnx_path,
        onnx_dir=onnx_dir,
        config_name="static",
        calibration_dataset=calibration_dataset
    )

if __name__ == "__main__":
    main()