Upload to_onnx.py
Browse files- to_onnx.py +39 -231
to_onnx.py
CHANGED
@@ -1,256 +1,64 @@
|
|
1 |
-
import os
|
2 |
import torch
|
3 |
-
from transformers import
|
4 |
-
|
5 |
-
from onnxruntime.quantization.calibrate import CalibrationDataReader
|
6 |
-
import onnx
|
7 |
-
import time
|
8 |
import numpy as np
|
9 |
|
10 |
-
def
|
11 |
-
"""
|
12 |
-
|
13 |
-
|
14 |
-
os.makedirs(abs_path)
|
15 |
-
print(f"Created directory: {abs_path}")
|
16 |
-
return abs_path
|
17 |
-
|
18 |
-
def verify_file_exists(file_path, timeout=5):
|
19 |
-
"""Verify that a file exists and is not empty"""
|
20 |
-
start_time = time.time()
|
21 |
-
while time.time() - start_time < timeout:
|
22 |
-
if os.path.exists(file_path) and os.path.getsize(file_path) > 0:
|
23 |
-
return True
|
24 |
-
time.sleep(0.1)
|
25 |
-
return False
|
26 |
-
|
27 |
-
def export_to_onnx(model, tokenizer, save_path):
|
28 |
-
"""Export model to ONNX format"""
|
29 |
try:
|
30 |
-
#
|
31 |
-
|
32 |
-
|
33 |
-
# Export the model to ONNX
|
34 |
-
torch.onnx.export(
|
35 |
-
model,
|
36 |
-
(dummy_input["input_ids"], dummy_input["attention_mask"]),
|
37 |
-
save_path,
|
38 |
-
opset_version=14,
|
39 |
-
input_names=["input_ids", "attention_mask"],
|
40 |
-
output_names=["output"],
|
41 |
-
dynamic_axes={
|
42 |
-
"input_ids": {0: "batch_size"},
|
43 |
-
"attention_mask": {0: "batch_size"},
|
44 |
-
"output": {0: "batch_size"}
|
45 |
-
}
|
46 |
-
)
|
47 |
-
|
48 |
-
# Verify the file was created
|
49 |
-
if verify_file_exists(save_path):
|
50 |
-
print(f"Successfully exported ONNX model to {save_path}")
|
51 |
-
return True
|
52 |
-
else:
|
53 |
-
print(f"Failed to verify ONNX model at {save_path}")
|
54 |
-
return False
|
55 |
-
except Exception as e:
|
56 |
-
print(f"Error exporting to ONNX: {str(e)}")
|
57 |
-
return False
|
58 |
-
|
59 |
-
def create_calibration_dataset(tokenizer, max_length=512):
|
60 |
-
"""Generate calibration dataset for static quantization with padding"""
|
61 |
-
samples = [
|
62 |
-
"This is an English sentence.",
|
63 |
-
"Dies ist ein deutscher Satz.",
|
64 |
-
"C'est une phrase française.",
|
65 |
-
"Esta es una frase en español.",
|
66 |
-
"这是一个中文句子。",
|
67 |
-
"これは日本語の文章です。"
|
68 |
-
]
|
69 |
-
|
70 |
-
# Tokenize with padding and truncation
|
71 |
-
encoded_samples = []
|
72 |
-
for text in samples:
|
73 |
-
encoded = tokenizer(
|
74 |
-
text,
|
75 |
-
padding='max_length',
|
76 |
-
max_length=max_length,
|
77 |
-
truncation=True,
|
78 |
-
return_tensors="pt"
|
79 |
-
)
|
80 |
-
encoded_samples.append({
|
81 |
-
'input_ids': encoded['input_ids'],
|
82 |
-
'attention_mask': encoded['attention_mask']
|
83 |
-
})
|
84 |
-
|
85 |
-
return encoded_samples
|
86 |
-
|
87 |
-
class CalibrationLoader(CalibrationDataReader):
|
88 |
-
def __init__(self, calibration_data):
|
89 |
-
self.calibration_data = calibration_data
|
90 |
-
self.current_index = 0
|
91 |
-
|
92 |
-
def get_next(self):
|
93 |
-
if self.current_index >= len(self.calibration_data):
|
94 |
-
return None
|
95 |
-
|
96 |
-
current_data = self.calibration_data[self.current_index]
|
97 |
-
self.current_index += 1
|
98 |
-
|
99 |
-
# Ensure we're returning numpy arrays with the correct shape
|
100 |
-
return {
|
101 |
-
'input_ids': current_data['input_ids'].numpy(),
|
102 |
-
'attention_mask': current_data['attention_mask'].numpy()
|
103 |
-
}
|
104 |
-
|
105 |
-
def rewind(self):
|
106 |
-
self.current_index = 0
|
107 |
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
dummy_input = tokenizer(
|
113 |
-
"This is a sample input",
|
114 |
-
padding='max_length',
|
115 |
-
max_length=max_length,
|
116 |
-
truncation=True,
|
117 |
-
return_tensors="pt"
|
118 |
-
)
|
119 |
|
120 |
# Export the model to ONNX
|
|
|
|
|
121 |
torch.onnx.export(
|
122 |
model,
|
123 |
(dummy_input["input_ids"], dummy_input["attention_mask"]),
|
124 |
-
|
125 |
-
opset_version=14,
|
126 |
input_names=["input_ids", "attention_mask"],
|
127 |
output_names=["output"],
|
128 |
dynamic_axes={
|
129 |
-
"input_ids": {0: "
|
130 |
-
"attention_mask": {0: "
|
131 |
-
|
|
|
|
|
132 |
)
|
133 |
|
134 |
-
|
135 |
-
print(f"Successfully exported ONNX model to {save_path}")
|
136 |
-
return True
|
137 |
-
else:
|
138 |
-
print(f"Failed to verify ONNX model at {save_path}")
|
139 |
-
return False
|
140 |
-
except Exception as e:
|
141 |
-
print(f"Error exporting to ONNX: {str(e)}")
|
142 |
-
return False
|
143 |
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
|
148 |
-
|
149 |
-
|
150 |
-
onnx_dir (str): Directory to save quantized models
|
151 |
-
config_name (str): Type of quantization ('dynamic' or 'static')
|
152 |
-
calibration_dataset (list, optional): Dataset for static quantization calibration
|
153 |
-
"""
|
154 |
-
try:
|
155 |
-
quantized_model_path = os.path.join(onnx_dir, f"model_{config_name}_quantized.onnx")
|
156 |
-
|
157 |
-
if config_name == "dynamic":
|
158 |
-
print(f"\nPerforming dynamic quantization...")
|
159 |
-
quantize_dynamic(
|
160 |
-
model_input=base_onnx_path,
|
161 |
-
model_output=quantized_model_path,
|
162 |
-
weight_type=QuantType.QUInt8
|
163 |
-
)
|
164 |
|
165 |
-
|
166 |
-
print(f"\nPerforming static quantization...")
|
167 |
-
calibration_loader = CalibrationLoader(calibration_dataset)
|
168 |
-
quantize_static(
|
169 |
-
model_input=base_onnx_path,
|
170 |
-
model_output=quantized_model_path,
|
171 |
-
calibration_data_reader=calibration_loader,
|
172 |
-
quant_format=QuantType.QUInt8
|
173 |
-
)
|
174 |
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
|
179 |
-
|
180 |
-
|
181 |
-
print(f"Successfully created {config_name} quantized model at {quantized_model_path}")
|
182 |
|
183 |
-
|
184 |
-
|
185 |
-
quantized_size = os.path.getsize(quantized_model_path) / (1024 * 1024) # Convert to MB
|
186 |
-
|
187 |
-
print(f"Original model size: {base_size:.2f} MB")
|
188 |
-
print(f"Quantized model size: {quantized_size:.2f} MB")
|
189 |
-
print(f"Size reduction: {((base_size - quantized_size) / base_size * 100):.2f}%")
|
190 |
-
|
191 |
-
return True
|
192 |
-
else:
|
193 |
-
print(f"Failed to verify quantized model at {quantized_model_path}")
|
194 |
-
return False
|
195 |
|
196 |
except Exception as e:
|
197 |
-
print(f"Error during
|
198 |
-
return False
|
199 |
-
|
200 |
-
|
201 |
-
def main():
|
202 |
-
# Get absolute paths
|
203 |
-
current_dir = os.path.abspath(os.getcwd())
|
204 |
-
onnx_dir = ensure_directory(os.path.join(current_dir, "onnx"))
|
205 |
-
base_onnx_path = os.path.join(onnx_dir, "model.onnx")
|
206 |
-
|
207 |
-
print(f"Working directory: {current_dir}")
|
208 |
-
print(f"ONNX directory: {onnx_dir}")
|
209 |
-
print(f"Base ONNX model path: {base_onnx_path}")
|
210 |
-
|
211 |
-
# Step 1: Load model and tokenizer
|
212 |
-
print("\nLoading model and tokenizer...")
|
213 |
-
model_name = "alexneakameni/language_detection"
|
214 |
-
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
215 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
216 |
-
|
217 |
-
# Get the model's default max_length
|
218 |
-
max_length = tokenizer.model_max_length
|
219 |
-
|
220 |
-
# Step 2: Export base ONNX model
|
221 |
-
if not export_to_onnx(model, tokenizer, base_onnx_path, max_length):
|
222 |
-
print("Failed to export base ONNX model. Exiting.")
|
223 |
-
return
|
224 |
-
|
225 |
-
# Verify the ONNX model
|
226 |
-
try:
|
227 |
-
print(f"Verifying ONNX model at: {base_onnx_path}")
|
228 |
-
onnx_model = onnx.load(base_onnx_path)
|
229 |
-
print("Successfully verified ONNX model")
|
230 |
-
except Exception as e:
|
231 |
-
print(f"Error verifying ONNX model: {str(e)}")
|
232 |
-
return
|
233 |
-
|
234 |
-
# Step 3: Create calibration dataset
|
235 |
-
calibration_dataset = create_calibration_dataset(tokenizer, max_length)
|
236 |
-
|
237 |
-
# Step 4: Create quantized versions
|
238 |
-
print("\nCreating quantized versions...")
|
239 |
-
|
240 |
-
# Dynamic quantization
|
241 |
-
quantize_model(
|
242 |
-
base_onnx_path=base_onnx_path,
|
243 |
-
onnx_dir=onnx_dir,
|
244 |
-
config_name="dynamic"
|
245 |
-
)
|
246 |
-
|
247 |
-
# Static quantization
|
248 |
-
quantize_model(
|
249 |
-
base_onnx_path=base_onnx_path,
|
250 |
-
onnx_dir=onnx_dir,
|
251 |
-
config_name="static",
|
252 |
-
calibration_dataset=calibration_dataset
|
253 |
-
)
|
254 |
|
255 |
if __name__ == "__main__":
|
256 |
-
|
|
|
|
|
|
|
|
1 |
import torch
|
2 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
3 |
+
import onnxruntime as ort
|
|
|
|
|
|
|
4 |
import numpy as np
|
5 |
|
6 |
+
def convert_and_test_onnx(model_name, output_path="language_detection.onnx", test_text="This is a test sentence."):
|
7 |
+
"""
|
8 |
+
Converts a Hugging Face model to ONNX, modifies the tokenizer, and tests the ONNX model.
|
9 |
+
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
try:
|
11 |
+
# Load the tokenizer and model
|
12 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
13 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
+
# Modify the tokenizer's normalizer
|
16 |
+
if hasattr(tokenizer.backend_tokenizer.normalizer, "normalizations"):
|
17 |
+
tokenizer.backend_tokenizer.normalizer.normalizations = []
|
18 |
+
tokenizer.save_pretrained("./modified_tokenizer")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
# Export the model to ONNX
|
21 |
+
dummy_input = tokenizer("This is a test sentence.", return_tensors="pt")
|
22 |
+
|
23 |
torch.onnx.export(
|
24 |
model,
|
25 |
(dummy_input["input_ids"], dummy_input["attention_mask"]),
|
26 |
+
output_path,
|
|
|
27 |
input_names=["input_ids", "attention_mask"],
|
28 |
output_names=["output"],
|
29 |
dynamic_axes={
|
30 |
+
"input_ids": {0: "batch", 1: "sequence"},
|
31 |
+
"attention_mask": {0: "batch", 1: "sequence"},
|
32 |
+
"output": {0: "batch"},
|
33 |
+
},
|
34 |
+
opset_version=14,
|
35 |
)
|
36 |
|
37 |
+
print(f"Model successfully converted and saved to {output_path}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
|
39 |
+
# Test the ONNX model
|
40 |
+
ort_session = ort.InferenceSession(output_path)
|
41 |
+
tokenizer_test = AutoTokenizer.from_pretrained("./modified_tokenizer")
|
42 |
|
43 |
+
# Explicitly set return_token_type_ids=False
|
44 |
+
inputs = tokenizer_test(test_text, return_tensors="np", return_token_type_ids=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
|
46 |
+
ort_inputs = {k: v for k, v in inputs.items()}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
|
48 |
+
ort_outputs = ort_session.run(None, ort_inputs)
|
49 |
+
logits = ort_outputs[0]
|
50 |
+
predicted_class_id = np.argmax(logits, axis=-1)
|
51 |
|
52 |
+
label_list = model.config.id2label
|
53 |
+
predicted_label = label_list[predicted_class_id[0]]
|
|
|
54 |
|
55 |
+
print(f"Test text: {test_text}")
|
56 |
+
print(f"Predicted label: {predicted_label}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
|
58 |
except Exception as e:
|
59 |
+
print(f"Error during conversion or testing: {e}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
|
61 |
if __name__ == "__main__":
|
62 |
+
model_name = "dewdev/language_detection"
|
63 |
+
test_text = "मैंने राजा को हिंदी में एक पत्र लिखा।"
|
64 |
+
convert_and_test_onnx(model_name, test_text=test_text)
|