dewdev commited on
Commit
9e3dd30
verified
1 Parent(s): 37d4bae

Upload 8 files

Browse files
Files changed (8) hide show
  1. README.md +64 -3
  2. config.json +24 -0
  3. special_tokens_map.json +7 -0
  4. tf_model.h5 +3 -0
  5. to_onnx.py +176 -0
  6. tokenizer.json +0 -0
  7. tokenizer_config.json +56 -0
  8. vocab.txt +0 -0
README.md CHANGED
@@ -1,3 +1,64 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ license: apache-2.0
4
+ base_model: distilbert/distilbert-base-cased-distilled-squad
5
+ tags:
6
+ - generated_from_keras_callback
7
+ model-index:
8
+ - name: Docty/question_and_answer
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information Keras had access to. You should
13
+ probably proofread and complete it, then remove this comment. -->
14
+
15
+ # Docty/question_and_answer
16
+
17
+ This model is a fine-tuned version of [distilbert/distilbert-base-cased-distilled-squad](https://huggingface.co/distilbert/distilbert-base-cased-distilled-squad) on an unknown dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Train Loss: 0.4095
20
+ - Validation Loss: 0.6306
21
+ - Epoch: 9
22
+
23
+ ## Model description
24
+
25
+ More information needed
26
+
27
+ ## Intended uses & limitations
28
+
29
+ More information needed
30
+
31
+ ## Training and evaluation data
32
+
33
+ More information needed
34
+
35
+ ## Training procedure
36
+
37
+ ### Training hyperparameters
38
+
39
+ The following hyperparameters were used during training:
40
+ - optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 200, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}, 'registered_name': None}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
41
+ - training_precision: float32
42
+
43
+ ### Training results
44
+
45
+ | Train Loss | Validation Loss | Epoch |
46
+ |:----------:|:---------------:|:-----:|
47
+ | 1.2112 | 0.6667 | 0 |
48
+ | 0.5043 | 0.6306 | 1 |
49
+ | 0.4089 | 0.6306 | 2 |
50
+ | 0.4124 | 0.6306 | 3 |
51
+ | 0.4204 | 0.6306 | 4 |
52
+ | 0.4269 | 0.6306 | 5 |
53
+ | 0.4218 | 0.6306 | 6 |
54
+ | 0.4031 | 0.6306 | 7 |
55
+ | 0.4117 | 0.6306 | 8 |
56
+ | 0.4095 | 0.6306 | 9 |
57
+
58
+
59
+ ### Framework versions
60
+
61
+ - Transformers 4.47.0
62
+ - TensorFlow 2.17.1
63
+ - Datasets 3.2.0
64
+ - Tokenizers 0.21.0
config.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "distilbert/distilbert-base-cased-distilled-squad",
3
+ "activation": "gelu",
4
+ "architectures": [
5
+ "DistilBertForQuestionAnswering"
6
+ ],
7
+ "attention_dropout": 0.1,
8
+ "dim": 768,
9
+ "dropout": 0.1,
10
+ "hidden_dim": 3072,
11
+ "initializer_range": 0.02,
12
+ "max_position_embeddings": 512,
13
+ "model_type": "distilbert",
14
+ "n_heads": 12,
15
+ "n_layers": 6,
16
+ "output_past": true,
17
+ "pad_token_id": 0,
18
+ "qa_dropout": 0.1,
19
+ "seq_classif_dropout": 0.2,
20
+ "sinusoidal_pos_embds": true,
21
+ "tie_weights_": true,
22
+ "transformers_version": "4.47.0",
23
+ "vocab_size": 28996
24
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": "[CLS]",
3
+ "mask_token": "[MASK]",
4
+ "pad_token": "[PAD]",
5
+ "sep_token": "[SEP]",
6
+ "unk_token": "[UNK]"
7
+ }
tf_model.h5 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0e28afe23658cb018f3507106a07f29025ace312df02a44059a4162eed29847f
3
+ size 260895720
to_onnx.py ADDED
@@ -0,0 +1,176 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from transformers import AutoTokenizer, AutoConfig, DistilBertForQuestionAnswering # Correct import
3
+ import onnx
4
+ from onnxruntime.quantization import quantize_dynamic, QuantType
5
+ import os
6
+ import logging
7
+ from typing import Optional, Dict, Any
8
+
9
+ class ONNXModelConverter:
10
+ def __init__(self, model_name: str, output_dir: str):
11
+ self.model_name = model_name
12
+ self.output_dir = output_dir
13
+ self.setup_logging()
14
+
15
+ os.makedirs(output_dir, exist_ok=True)
16
+
17
+ self.logger.info(f"Loading tokenizer {model_name}...")
18
+ self.tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
19
+
20
+ self.logger.info(f"Loading model config {model_name}...")
21
+ config = AutoConfig.from_pretrained(model_name, trust_remote_code=True)
22
+
23
+ self.logger.info(f"Loading model {model_name}...")
24
+ try:
25
+ self.model = DistilBertForQuestionAnswering.from_pretrained(
26
+ model_name,
27
+ config=config,
28
+ trust_remote_code=True,
29
+ torch_dtype=torch.float32 # Keep this for consistency, though it might not be strictly necessary
30
+ )
31
+ except Exception as e: # Catch the exception if pytorch weights are not found
32
+ self.logger.info(f"Trying to load tensorflow weights")
33
+ try:
34
+ self.model = DistilBertForQuestionAnswering.from_pretrained(
35
+ model_name,
36
+ config=config,
37
+ trust_remote_code=True,
38
+ from_tf=True # Load from TensorFlow weights
39
+ )
40
+ except Exception as e:
41
+ self.logger.error(f"Failed to load the model: {e}")
42
+ raise # Re-raise the exception after logging
43
+
44
+ self.model.eval()
45
+
46
+ def setup_logging(self):
47
+ self.logger = logging.getLogger(__name__)
48
+ self.logger.setLevel(logging.INFO)
49
+ handler = logging.StreamHandler()
50
+ formatter = logging.Formatter('%(asctime)s - %(levelname)s - %(message)s')
51
+ handler.setFormatter(formatter)
52
+ self.logger.addHandler(handler)
53
+
54
+ def prepare_dummy_inputs(self):
55
+ dummy_input = self.tokenizer(
56
+ "Hello, how are you?",
57
+ return_tensors="pt",
58
+ padding=True,
59
+ truncation=True,
60
+ max_length=128
61
+ )
62
+ dummy_input.pop('token_type_ids', None)
63
+ return {
64
+ 'input_ids': dummy_input['input_ids'],
65
+ 'attention_mask': dummy_input['attention_mask'],
66
+ }
67
+
68
+ def export_to_onnx(self):
69
+ output_path = os.path.join(self.output_dir, "model.onnx")
70
+ inputs = self.prepare_dummy_inputs()
71
+
72
+ dynamic_axes = {
73
+ 'input_ids': {0: 'batch_size', 1: 'sequence_length'},
74
+ 'attention_mask': {0: 'batch_size', 1: 'sequence_length'},
75
+ 'start_logits': {0: 'batch_size', 1: 'sequence_length'},
76
+ 'end_logits': {0: 'batch_size', 1: 'sequence_length'},
77
+ }
78
+
79
+ class ModelWrapper(torch.nn.Module):
80
+ def __init__(self, model):
81
+ super().__init__()
82
+ self.model = model
83
+
84
+ def forward(self, input_ids, attention_mask):
85
+ outputs = self.model(input_ids=input_ids, attention_mask=attention_mask)
86
+ return outputs.start_logits, outputs.end_logits
87
+
88
+ wrapped_model = ModelWrapper(self.model)
89
+
90
+ try:
91
+ torch.onnx.export(
92
+ wrapped_model,
93
+ (inputs['input_ids'], inputs['attention_mask']),
94
+ output_path,
95
+ export_params=True,
96
+ opset_version=14, # Or a suitable version
97
+ do_constant_folding=True,
98
+ input_names=['input_ids', 'attention_mask'],
99
+ output_names=['start_logits', 'end_logits'],
100
+ dynamic_axes=dynamic_axes,
101
+ verbose=False
102
+ )
103
+ self.logger.info(f"Model exported to {output_path}")
104
+ return output_path
105
+ except Exception as e:
106
+ self.logger.error(f"ONNX export failed: {str(e)}")
107
+ raise
108
+
109
+ def verify_model(self, model_path: str):
110
+ try:
111
+ onnx_model = onnx.load(model_path)
112
+ onnx.checker.check_model(onnx_model)
113
+ self.logger.info("ONNX model verification successful")
114
+ return True
115
+ except Exception as e:
116
+ self.logger.error(f"Model verification failed: {str(e)}")
117
+ return False
118
+
119
+ def quantize_model(self, model_path: str):
120
+ weight_types = {'int4':QuantType.QInt4, 'int8':QuantType.QInt8, 'uint4':QuantType.QUInt4, 'uint8':QuantType.QUInt8, 'uint16':QuantType.QUInt16, 'int16':QuantType.QInt16}
121
+ all_quantized_paths = []
122
+ for weight_type in weight_types.keys():
123
+ quantized_path = os.path.join(self.output_dir, "model_" + weight_type + ".onnx")
124
+
125
+ try:
126
+ quantize_dynamic(
127
+ model_path,
128
+ quantized_path,
129
+ weight_type=weight_types[weight_type]
130
+ )
131
+ self.logger.info(f"Model quantized ({weight_type}) and saved to {quantized_path}")
132
+ all_quantized_paths.append(quantized_path)
133
+ except Exception as e:
134
+ self.logger.error(f"Quantization ({weight_type}) failed: {str(e)}")
135
+ raise
136
+
137
+ return all_quantized_paths
138
+
139
+ def convert(self):
140
+ try:
141
+ onnx_path = self.export_to_onnx()
142
+
143
+ if self.verify_model(onnx_path):
144
+ quantized_paths = self.quantize_model(onnx_path)
145
+
146
+ tokenizer_path = os.path.join(self.output_dir, "tokenizer")
147
+ self.tokenizer.save_pretrained(tokenizer_path)
148
+ self.logger.info(f"Tokenizer saved to {tokenizer_path}")
149
+
150
+ return {
151
+ 'onnx_model': onnx_path,
152
+ 'quantized_models': quantized_paths,
153
+ 'tokenizer': tokenizer_path
154
+ }
155
+ else:
156
+ raise Exception("Model verification failed")
157
+
158
+ except Exception as e:
159
+ self.logger.error(f"Conversion process failed: {str(e)}")
160
+ raise
161
+
162
+ if __name__ == "__main__":
163
+ MODEL_NAME = "Docty/question_and_answer" # Or any other suitable model
164
+ OUTPUT_DIR = "onnx"
165
+
166
+ try:
167
+ converter = ONNXModelConverter(MODEL_NAME, OUTPUT_DIR)
168
+ results = converter.convert()
169
+
170
+ print("\nConversion completed successfully!")
171
+ print(f"ONNX model path: {results['onnx_model']}")
172
+ print(f"Quantized model paths: {results['quantized_models']}")
173
+ print(f"Tokenizer path: {results['tokenizer']}")
174
+
175
+ except Exception as e:
176
+ print(f"Conversion failed: {str(e)}")
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,56 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": false,
45
+ "cls_token": "[CLS]",
46
+ "do_lower_case": false,
47
+ "extra_special_tokens": {},
48
+ "mask_token": "[MASK]",
49
+ "model_max_length": 512,
50
+ "pad_token": "[PAD]",
51
+ "sep_token": "[SEP]",
52
+ "strip_accents": null,
53
+ "tokenize_chinese_chars": true,
54
+ "tokenizer_class": "DistilBertTokenizer",
55
+ "unk_token": "[UNK]"
56
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff