File size: 2,063 Bytes
a7fe6a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0d91ed7
 
a7fe6a6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0d91ed7
 
a7fe6a6
 
 
0d91ed7
a7fe6a6
 
 
 
 
0d91ed7
 
 
 
 
 
 
 
 
 
a7fe6a6
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
---
license: mit
base_model: indolem/indobert-base-uncased
tags:
- generated_from_trainer
model-index:
- name: text-classification-indobert
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# text-classification-indobert

This model is a fine-tuned version of [indolem/indobert-base-uncased](https://huggingface.co/indolem/indobert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9707
- Balanced Accuracy: 0.7916

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss | Balanced Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:-----------------:|
| 1.7367        | 1.0   | 166  | 1.4765          | 0.4090            |
| 1.2086        | 2.0   | 332  | 1.0634          | 0.6459            |
| 0.8858        | 3.0   | 498  | 0.7958          | 0.7412            |
| 0.715         | 4.0   | 664  | 0.8339          | 0.7167            |
| 0.358         | 5.0   | 830  | 0.7969          | 0.7732            |
| 0.4572        | 6.0   | 996  | 0.8822          | 0.7848            |
| 0.2681        | 7.0   | 1162 | 0.8832          | 0.7730            |
| 0.1724        | 8.0   | 1328 | 0.9523          | 0.7876            |
| 0.1618        | 9.0   | 1494 | 0.9707          | 0.7916            |
| 0.2215        | 10.0  | 1660 | 0.9926          | 0.7887            |


### Framework versions

- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Datasets 2.19.2
- Tokenizers 0.19.1