File size: 8,339 Bytes
dfd9f0e a833a3c a333f3a a833a3c 85698cd 7f17cfa a333f3a a833a3c 285bcb2 a833a3c 594f101 a833a3c e136682 a833a3c e136682 a833a3c 3eeff15 a833a3c b66dee6 285bcb2 b66dee6 a833a3c b66dee6 a833a3c d66671c a333f3a a833a3c a333f3a b66dee6 a333f3a d66671c 7f17cfa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 |
---
license: unknown
library_name: peft
tags:
- llama-2
datasets:
- ehartford/dolphin
- garage-bAInd/Open-Platypus
inference: false
pipeline_tag: text-generation
base_model: meta-llama/Llama-2-7b-hf
model-index:
- name: llama-2-7b-instruct-peft
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 51.19
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=dfurman/llama-2-7b-instruct-peft
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 78.92
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=dfurman/llama-2-7b-instruct-peft
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 46.63
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=dfurman/llama-2-7b-instruct-peft
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 48.5
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=dfurman/llama-2-7b-instruct-peft
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 74.43
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=dfurman/llama-2-7b-instruct-peft
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 5.99
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=dfurman/llama-2-7b-instruct-peft
name: Open LLM Leaderboard
---
<div align="center">
<img src="./assets/llama.png" width="150px">
</div>
# Llama-2-7B-Instruct-v0.1
This instruction model was built via parameter-efficient QLoRA finetuning of [Llama-2-7b](https://huggingface.co/meta-llama/Llama-2-7b-hf) on the first 5k rows of [ehartford/dolphin](https://huggingface.co/datasets/ehartford/dolphin) and the first 5k rows of [garage-bAInd/Open-Platypus](https://huggingface.co/datasets/garage-bAInd/Open-Platypus). Finetuning was executed on 1x A100 (40 GB SXM) for roughly 2 hours on the [Lambda Labs](https://cloud.lambdalabs.com/instances) platform.
# Open LLM Leaderboard Evaluation Results
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_dfurman__llama-2-7b-instruct-peft)
| Metric | Value |
|-----------------------|---------------------------|
| Avg. | 44.5 |
| ARC (25-shot) | 51.19 |
| HellaSwag (10-shot) | 78.92 |
| MMLU (5-shot) | 46.63 |
| TruthfulQA (0-shot) | 48.5 |
| Winogrande (5-shot) | 74.43 |
| GSM8K (5-shot) | 5.99 |
| DROP (3-shot) | 5.82 |
We use the [Language Model Evaluation Harness](https://github.com/EleutherAI/lm-evaluation-harness) to run the benchmark tests above, using the same version as Hugging Face's [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard).
## Loss curve
![loss curve](https://raw.githubusercontent.com/daniel-furman/sft-demos/main/assets/sep_12_23_9_20_00_log_loss_curves_Llama-2-7b-instruct.png)
The above loss curve was generated from the run's private wandb.ai log.
## Limitations and biases
_The following language is modified from [EleutherAI's GPT-NeoX-20B](https://huggingface.co/EleutherAI/gpt-neox-20b)_
This model can produce factually incorrect output, and should not be relied on to produce factually accurate information.
This model was trained on various public datasets.
While great efforts have been taken to clean the pretraining data, it is possible that this model could generate lewd, biased or otherwise offensive outputs.
## How to use
* [notebook](assets/basic_inference_llama_2_dolphin.ipynb)
```python
!pip install -q -U huggingface_hub peft transformers torch accelerate
```
```python
from huggingface_hub import notebook_login
import torch
from peft import PeftModel, PeftConfig
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
BitsAndBytesConfig,
pipeline,
)
notebook_login()
```
```python
peft_model_id = "dfurman/Llama-2-7B-Instruct-v0.1"
config = PeftConfig.from_pretrained(peft_model_id)
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16,
)
model = AutoModelForCausalLM.from_pretrained(
config.base_model_name_or_path,
quantization_config=bnb_config,
use_auth_token=True,
device_map="auto",
)
tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path, use_fast=True)
tokenizer.pad_token = tokenizer.eos_token
model = PeftModel.from_pretrained(model, peft_model_id)
format_template = "You are a helpful assistant. {query}\n"
```
```python
# First, format the prompt
query = "Tell me a recipe for vegan banana bread."
prompt = format_template.format(query=query)
# Inference can be done using model.generate
print("\n\n*** Generate:")
input_ids = tokenizer(prompt, return_tensors="pt").input_ids.cuda()
with torch.autocast("cuda", dtype=torch.bfloat16):
output = model.generate(
input_ids=input_ids,
max_new_tokens=512,
do_sample=True,
temperature=0.7,
return_dict_in_generate=True,
eos_token_id=tokenizer.eos_token_id,
pad_token_id=tokenizer.pad_token_id,
repetition_penalty=1.2,
)
print(tokenizer.decode(output["sequences"][0], skip_special_tokens=True))
```
## Runtime tests
coming
## Acknowledgements
This model was finetuned by Daniel Furman on Sep 10, 2023 and is for research applications only.
## Disclaimer
The license on this model does not constitute legal advice. We are not responsible for the actions of third parties who use this model. Please cosult an attorney before using this model for commercial purposes.
## meta-llama/Llama-2-7b-hf citation
```
coming
```
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- quant_method: bitsandbytes
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: False
- bnb_4bit_compute_dtype: bfloat16
## Framework versions
- PEFT 0.6.0.dev0
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_dfurman__llama-2-7b-instruct-peft)
| Metric |Value|
|---------------------------------|----:|
|Avg. |50.94|
|AI2 Reasoning Challenge (25-Shot)|51.19|
|HellaSwag (10-Shot) |78.92|
|MMLU (5-Shot) |46.63|
|TruthfulQA (0-shot) |48.50|
|Winogrande (5-shot) |74.43|
|GSM8k (5-shot) | 5.99|
|