--- license: unknown library_name: peft tags: - llama-2 datasets: - ehartford/dolphin - garage-bAInd/Open-Platypus inference: false pipeline_tag: text-generation base_model: meta-llama/Llama-2-7b-hf model-index: - name: llama-2-7b-instruct-peft results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 51.19 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=dfurman/llama-2-7b-instruct-peft name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 78.92 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=dfurman/llama-2-7b-instruct-peft name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 46.63 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=dfurman/llama-2-7b-instruct-peft name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 48.5 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=dfurman/llama-2-7b-instruct-peft name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 74.43 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=dfurman/llama-2-7b-instruct-peft name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 5.99 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=dfurman/llama-2-7b-instruct-peft name: Open LLM Leaderboard ---
# Llama-2-7B-Instruct-v0.1 This instruction model was built via parameter-efficient QLoRA finetuning of [Llama-2-7b](https://huggingface.co/meta-llama/Llama-2-7b-hf) on the first 5k rows of [ehartford/dolphin](https://huggingface.co/datasets/ehartford/dolphin) and the first 5k rows of [garage-bAInd/Open-Platypus](https://huggingface.co/datasets/garage-bAInd/Open-Platypus). Finetuning was executed on 1x A100 (40 GB SXM) for roughly 2 hours on the [Lambda Labs](https://cloud.lambdalabs.com/instances) platform. # Open LLM Leaderboard Evaluation Results Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_dfurman__llama-2-7b-instruct-peft) | Metric | Value | |-----------------------|---------------------------| | Avg. | 44.5 | | ARC (25-shot) | 51.19 | | HellaSwag (10-shot) | 78.92 | | MMLU (5-shot) | 46.63 | | TruthfulQA (0-shot) | 48.5 | | Winogrande (5-shot) | 74.43 | | GSM8K (5-shot) | 5.99 | | DROP (3-shot) | 5.82 | We use the [Language Model Evaluation Harness](https://github.com/EleutherAI/lm-evaluation-harness) to run the benchmark tests above, using the same version as Hugging Face's [Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard). ## Loss curve ![loss curve](https://raw.githubusercontent.com/daniel-furman/sft-demos/main/assets/sep_12_23_9_20_00_log_loss_curves_Llama-2-7b-instruct.png) The above loss curve was generated from the run's private wandb.ai log. ## Limitations and biases _The following language is modified from [EleutherAI's GPT-NeoX-20B](https://huggingface.co/EleutherAI/gpt-neox-20b)_ This model can produce factually incorrect output, and should not be relied on to produce factually accurate information. This model was trained on various public datasets. While great efforts have been taken to clean the pretraining data, it is possible that this model could generate lewd, biased or otherwise offensive outputs. ## How to use * [notebook](assets/basic_inference_llama_2_dolphin.ipynb) ```python !pip install -q -U huggingface_hub peft transformers torch accelerate ``` ```python from huggingface_hub import notebook_login import torch from peft import PeftModel, PeftConfig from transformers import ( AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, pipeline, ) notebook_login() ``` ```python peft_model_id = "dfurman/Llama-2-7B-Instruct-v0.1" config = PeftConfig.from_pretrained(peft_model_id) bnb_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.bfloat16, ) model = AutoModelForCausalLM.from_pretrained( config.base_model_name_or_path, quantization_config=bnb_config, use_auth_token=True, device_map="auto", ) tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path, use_fast=True) tokenizer.pad_token = tokenizer.eos_token model = PeftModel.from_pretrained(model, peft_model_id) format_template = "You are a helpful assistant. {query}\n" ``` ```python # First, format the prompt query = "Tell me a recipe for vegan banana bread." prompt = format_template.format(query=query) # Inference can be done using model.generate print("\n\n*** Generate:") input_ids = tokenizer(prompt, return_tensors="pt").input_ids.cuda() with torch.autocast("cuda", dtype=torch.bfloat16): output = model.generate( input_ids=input_ids, max_new_tokens=512, do_sample=True, temperature=0.7, return_dict_in_generate=True, eos_token_id=tokenizer.eos_token_id, pad_token_id=tokenizer.pad_token_id, repetition_penalty=1.2, ) print(tokenizer.decode(output["sequences"][0], skip_special_tokens=True)) ``` ## Runtime tests coming ## Acknowledgements This model was finetuned by Daniel Furman on Sep 10, 2023 and is for research applications only. ## Disclaimer The license on this model does not constitute legal advice. We are not responsible for the actions of third parties who use this model. Please cosult an attorney before using this model for commercial purposes. ## meta-llama/Llama-2-7b-hf citation ``` coming ``` ## Training procedure The following `bitsandbytes` quantization config was used during training: - quant_method: bitsandbytes - load_in_8bit: False - load_in_4bit: True - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: nf4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: bfloat16 ## Framework versions - PEFT 0.6.0.dev0 # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_dfurman__llama-2-7b-instruct-peft) | Metric |Value| |---------------------------------|----:| |Avg. |50.94| |AI2 Reasoning Challenge (25-Shot)|51.19| |HellaSwag (10-Shot) |78.92| |MMLU (5-Shot) |46.63| |TruthfulQA (0-shot) |48.50| |Winogrande (5-shot) |74.43| |GSM8k (5-shot) | 5.99|