File size: 7,794 Bytes
30a2f10 46590e2 6a5c74a 30a2f10 46590e2 6a5c74a 9e764e3 3f07b4b 2b49a35 30a2f10 46590e2 30a2f10 79a5c2b 30a2f10 79a5c2b 30a2f10 46590e2 30a2f10 46590e2 30a2f10 46590e2 30a2f10 46590e2 30a2f10 46590e2 30a2f10 f02aef8 9203a3b 3d99bce 9203a3b 30a2f10 46590e2 30a2f10 e34c520 30a2f10 46590e2 30a2f10 79a5c2b 46590e2 e34c520 30a2f10 e34c520 46590e2 30a2f10 79a5c2b 46590e2 30a2f10 46590e2 79a5c2b 46590e2 79a5c2b 3764f1d 79a5c2b 30a2f10 3764f1d 79a5c2b 3764f1d 79a5c2b 3764f1d 2b49a35 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 |
---
language:
- en
license: llama3
library_name: transformers
tags:
- orpo
- llama 3
- rlhf
- sft
base_model:
- meta-llama/Meta-Llama-3-8B
datasets:
- mlabonne/orpo-dpo-mix-40k
model-index:
- name: Llama-3-8B-Orpo-v0.1
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: HuggingFaceH4/ifeval
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 30.0
name: strict accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=dfurman/Llama-3-8B-Orpo-v0.1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: BBH
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 13.77
name: normalized accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=dfurman/Llama-3-8B-Orpo-v0.1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: hendrycks/competition_math
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 3.78
name: exact match
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=dfurman/Llama-3-8B-Orpo-v0.1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 1.57
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=dfurman/Llama-3-8B-Orpo-v0.1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 2.73
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=dfurman/Llama-3-8B-Orpo-v0.1
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 14.23
name: accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=dfurman/Llama-3-8B-Orpo-v0.1
name: Open LLM Leaderboard
---
# dfurman/Llama-3-8B-Orpo-v0.1
![](https://raw.githubusercontent.com/daniel-furman/sft-demos/main/assets/llama_3.jpeg)
This is an ORPO fine-tune of [meta-llama/Meta-Llama-3-8B](https://huggingface.co/meta-llama/Meta-Llama-3-8B) on 4k samples of [mlabonne/orpo-dpo-mix-40k](https://huggingface.co/datasets/mlabonne/orpo-dpo-mix-40k).
It's a successful fine-tune that follows the ChatML template!
## 🔎 Application
This model uses a context window of 8k. It was trained with the ChatML template.
## 🏆 Evaluation
### Open LLM Leaderboard
| Model ID | Average | ARC | HellaSwag | MMLU | TruthfulQA | Winogrande | GSM8K |
| ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | --------: | --------: | --------: | ---------: | --------: | --------: | --------: |
| [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) [📄](https://huggingface.co/datasets/open-llm-leaderboard/details_meta-llama__Meta-Llama-3-8B-Instruct) | 66.87 | 60.75 | 78.55 | 67.07 | 51.65 | 74.51 | 68.69 |
| [**dfurman/Llama-3-8B-Orpo-v0.1**](https://huggingface.co/dfurman/Llama-3-8B-Orpo-v0.1) [📄](https://huggingface.co/datasets/open-llm-leaderboard/details_dfurman__Llama-3-8B-Orpo-v0.1) | **64.67** | **60.67** | **82.56** | **66.59** | **50.47** | **79.01** | **48.75** |
| [meta-llama/Meta-Llama-3-8B](https://huggingface.co/meta-llama/Meta-Llama-3-8B) [📄](https://huggingface.co/datasets/open-llm-leaderboard/details_meta-llama__Meta-Llama-3-8B) | 62.35 | 59.22 | 82.02 | 66.49 | 43.95 | 77.11 | 45.34 |
## 📈 Training curves
You can find the experiment on W&B at [this address](https://wandb.ai/dryanfurman/huggingface/runs/uvr916mv?nw=nwuserdryanfurman).
## 💻 Usage
<details>
<summary>Setup</summary>
```python
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
if torch.cuda.get_device_capability()[0] >= 8:
!pip install -qqq flash-attn
attn_implementation = "flash_attention_2"
torch_dtype = torch.bfloat16
else:
attn_implementation = "eager"
torch_dtype = torch.float16
model = "dfurman/Llama-3-8B-Orpo-v0.1"
tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
"text-generation",
model=model,
model_kwargs={
"torch_dtype": torch_dtype,
"device_map": "auto",
"attn_implementation": attn_implementation,
}
)
```
</details>
### Run
```python
messages = [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "Tell me a recipe for a spicy margarita."},
]
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
print("***Prompt:\n", prompt)
outputs = pipeline(prompt, max_new_tokens=1000, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print("***Generation:\n", outputs[0]["generated_text"][len(prompt):])
```
<details>
<summary>Output</summary>
```
"""***Prompt:
<|im_start|>system
You are a helpful assistant.<|im_end|>
<|im_start|>user
Tell me a recipe for a spicy margarita.<|im_end|>
<|im_start|>assistant
***Generation:
Sure! Here's a recipe for a spicy margarita:
Ingredients:
- 2 oz silver tequila
- 1 oz triple sec
- 1 oz fresh lime juice
- 1/2 oz simple syrup
- 1/2 oz fresh lemon juice
- 1/2 tsp jalapeño, sliced (adjust to taste)
- Ice cubes
- Salt for rimming the glass
Instructions:
1. Prepare the glass by running a lime wedge around the rim of the glass. Dip the rim into a shallow plate of salt to coat.
2. Combine the tequila, triple sec, lime juice, simple syrup, lemon juice, and jalapeño slices in a cocktail shaker.
3. Add ice cubes to the cocktail shaker and shake vigorously for 30 seconds to 1 minute.
4. Strain the cocktail into the prepared glass.
5. Garnish with a lime wedge and jalapeño slice.
Enjoy! This spicy margarita has a nice balance of sweetness and acidity, with a subtle heat from the jalapeño that builds gradually as you sip."""
```
</details>
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_dfurman__Llama-3-8B-Orpo-v0.1)
| Metric |Value|
|-------------------|----:|
|Avg. |11.01|
|IFEval (0-Shot) |30.00|
|BBH (3-Shot) |13.77|
|MATH Lvl 5 (4-Shot)| 3.78|
|GPQA (0-shot) | 1.57|
|MuSR (0-shot) | 2.73|
|MMLU-PRO (5-shot) |14.23|
|