|
pip install torch diffusers transformers datasets wandb |
|
import torch |
|
import torch.nn as nn |
|
from torch.nn import functional as F |
|
|
|
|
|
class UNetModel(nn.Module): |
|
def __init__(self, in_channels=3, out_channels=3, base_channels=64): |
|
super(UNetModel, self).__init__() |
|
|
|
|
|
self.enc1 = self.conv_block(in_channels, base_channels) |
|
self.enc2 = self.conv_block(base_channels, base_channels * 2) |
|
self.enc3 = self.conv_block(base_channels * 2, base_channels * 4) |
|
|
|
|
|
self.middle = self.conv_block(base_channels * 4, base_channels * 8) |
|
|
|
|
|
self.dec3 = self.conv_block(base_channels * 8, base_channels * 4) |
|
self.dec2 = self.conv_block(base_channels * 4, base_channels * 2) |
|
self.dec1 = self.conv_block(base_channels * 2, out_channels) |
|
|
|
def conv_block(self, in_channels, out_channels): |
|
return nn.Sequential( |
|
nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1), |
|
nn.ReLU(), |
|
nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1), |
|
nn.ReLU(), |
|
nn.MaxPool2d(2) |
|
) |
|
|
|
def forward(self, x): |
|
|
|
x1 = self.enc1(x) |
|
x2 = self.enc2(x1) |
|
x3 = self.enc3(x2) |
|
|
|
|
|
x_middle = self.middle(x3) |
|
|
|
|
|
x3_dec = self.dec3(x_middle) |
|
x2_dec = self.dec2(x3_dec + x3) |
|
x1_dec = self.dec1(x2_dec + x2) |
|
|
|
return x1_dec |
|
|