lsg-bart-base-4096-mediqa-chat-taskb-sectionwise-past_medical_family_and_social_history
/
modeling_lsg_bart.py
from logging import warn | |
import torch | |
from transformers.models.bart.modeling_bart import * | |
from transformers.models.bart.modeling_bart import _expand_mask | |
import torch.nn as nn | |
import sys | |
AUTO_MAP = { | |
"AutoModel": "modeling_lsg_bart.LSGBartModel", | |
"AutoModelForCausalLM": "modeling_lsg_bart.LSGBartForCausalLM", | |
"AutoModelForQuestionAnswering": "modeling_lsg_bart.LSGBartForQuestionAnswering", | |
"AutoModelForSequenceClassification": "modeling_lsg_bart.LSGBartForSequenceClassification", | |
"AutoModelForSeq2SeqLM": "modeling_lsg_bart.LSGBartForConditionalGeneration" | |
} | |
class LSGBartConfig(BartConfig): | |
""" | |
This class overrides :class:`~transformers.BartConfig`. Please check the superclass for the appropriate | |
documentation alongside usage examples. | |
""" | |
base_model_prefix = "lsg" | |
model_type = "bart" | |
keys_to_ignore_at_inference = ["past_key_values"] | |
attribute_map = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} | |
def __init__( | |
self, | |
adaptive=True, | |
base_model_prefix="lsg", | |
block_size=128, | |
lsh_num_pre_rounds=1, | |
mask_first_token=False, | |
num_global_tokens=1, | |
pass_global_tokens_to_decoder=True, | |
pool_with_global=True, | |
sparse_block_size=128, | |
sparsity_factor=2, | |
sparsity_type="norm", | |
**kwargs | |
): | |
"""Constructs LSGConfig.""" | |
super().__init__(**kwargs) | |
self.adaptive = adaptive | |
self.auto_map = AUTO_MAP | |
self.base_model_prefix = base_model_prefix | |
self.block_size = block_size | |
self.lsh_num_pre_rounds = lsh_num_pre_rounds | |
self.mask_first_token = mask_first_token | |
self.num_global_tokens = num_global_tokens | |
self.pass_global_tokens_to_decoder = pass_global_tokens_to_decoder | |
self.pool_with_global = pool_with_global | |
self.sparse_block_size = sparse_block_size | |
self.sparsity_factor = sparsity_factor | |
self.sparsity_type = sparsity_type | |
if sparsity_type not in [None, "none", "norm", "lsh", "pooling", "stride", "block_stride"]: | |
logger.warning( | |
"[WARNING CONFIG]: sparsity_mode not in [None, 'none', 'norm', 'lsh', 'pooling', 'stride', 'block_stride'], \ | |
setting sparsity_type=None, computation will skip sparse attention") | |
self.sparsity_type = None | |
if self.sparsity_type in ["stride", "block_stride"]: | |
if self.sparsity_factor > self.encoder_attention_heads: | |
logger.warning( | |
"[WARNING CONFIG]: sparsity_factor > encoder_attention_heads is not recommended for stride/block_stride sparsity" | |
) | |
if self.num_global_tokens < 1: | |
logger.warning( | |
"[WARNING CONFIG]: num_global_tokens < 1 is not compatible, setting num_global_tokens=1" | |
) | |
self.num_global_tokens = 1 | |
elif self.num_global_tokens > 512: | |
logger.warning( | |
"[WARNING CONFIG]: num_global_tokens > 512 is not allowed, setting num_global_tokens=512" | |
) | |
self.num_global_tokens = 512 | |
if self.sparsity_factor > 0: | |
assert self.block_size % self.sparsity_factor == 0, "[ERROR CONFIG]: block_size must be divisible by sparsity_factor" | |
assert self.block_size//self.sparsity_factor >= 1, "[ERROR CONFIG]: make sure block_size >= sparsity_factor" | |
if self.mask_first_token and not pool_with_global: | |
logger.warning( | |
"[WARNING CONFIG]: pool_with_global==False is not compatible with mask_first_token==True. Setting pool_with_global to True.") | |
self.pool_with_global = True | |
if hasattr(self, "position_embedding_type"): | |
if self.position_embedding_type != "absolute": | |
logger.warning( | |
"[WARNING CONFIG]: LSG Attention is not compatible with relative positional embedding and will skip its computation. Set position_embedding_type='absolute' to remove this warning.") | |
class BaseSelfAttention(nn.Module): | |
def __init__( | |
self, | |
embed_dim, | |
num_heads, | |
dropout=0.0, | |
is_decoder=False, | |
bias=True, | |
): | |
super().__init__() | |
self.embed_dim = embed_dim | |
self.num_heads = num_heads | |
self.dropout = dropout | |
self.head_dim = embed_dim // num_heads | |
if (self.head_dim * num_heads) != self.embed_dim: | |
raise ValueError( | |
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}" | |
f" and `num_heads`: {num_heads})." | |
) | |
self.scaling = self.head_dim ** -0.5 | |
self.is_decoder = is_decoder | |
self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias) | |
self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias) | |
self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias) | |
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias) | |
def transpose_for_scores(self, x): | |
new_x_shape = x.size()[:-1] + ( | |
self.num_heads, | |
self.head_dim, | |
) | |
x = x.view(*new_x_shape) | |
return x.permute(0, 2, 1, 3) | |
def reshape_output(self, context_layer): | |
context_layer = context_layer.permute(0, 2, 1, 3).contiguous() | |
new_context_layer_shape = context_layer.size()[:-2] + (self.embed_dim,) | |
return context_layer.view(*new_context_layer_shape) | |
def project_QKV(self, hidden_states): | |
query_layer = self.transpose_for_scores(self.q_proj(hidden_states)) | |
key_layer = self.transpose_for_scores(self.k_proj(hidden_states)) | |
value_layer = self.transpose_for_scores(self.v_proj(hidden_states)) | |
return query_layer, key_layer, value_layer | |
class BaseAttentionProduct(nn.Module): | |
def __init__(self, config): | |
""" | |
Compute attention: softmax(Q @ K.T) @ V | |
""" | |
super().__init__() | |
self.dropout = nn.Dropout(config.attention_dropout) | |
def forward(self, query_layer, key_layer, value_layer, attention_mask=None): | |
d = query_layer.shape[-1] | |
# Take the dot product between "query" and "key" to get the raw attention scores. | |
attention_scores = query_layer @ key_layer.transpose(-1, -2) / math.sqrt(d) | |
del query_layer | |
del key_layer | |
if attention_mask is not None: | |
# Apply the attention mask is (precomputed for all layers in RobertaModel forward() function) | |
attention_scores = attention_scores + attention_mask | |
del attention_mask | |
# Normalize the attention scores to probabilities. | |
attention_probs = nn.Softmax(dim=-1)(attention_scores) | |
# This is actually dropping out entire tokens to attend to, which might | |
# seem a bit unusual, but is taken from the original Transformer paper. | |
context_layer = self.dropout(attention_probs) @ value_layer | |
return context_layer | |
class LSGAttentionProduct(nn.Module): | |
def __init__(self, config, block_size=None, sparse_block_size=None, sparsity_factor=4): | |
""" | |
Compute block or overlapping blocks attention products | |
""" | |
super().__init__() | |
self.block_size = block_size | |
self.sparse_block_size = sparse_block_size | |
self.sparsity_factor = sparsity_factor | |
if self.block_size is None: | |
self.block_size = config.block_size | |
if self.sparse_block_size is None: | |
self.sparse_block_size = config.sparse_block_size | |
# Shape of blocks | |
self.local_shapes = (self.block_size*3, self.block_size) | |
if self.sparse_block_size and self.sparsity_factor > 0: | |
self.sparse_shapes = (self.sparse_block_size*3, self.block_size//self.sparsity_factor) | |
self.attention = BaseAttentionProduct(config) | |
def build_lsg_inputs(self, hidden_states, sparse_hidden_states, global_hidden_states, is_attn_mask=False): | |
# Build local tokens | |
local_hidden_states = self.reshape_to_local_block(hidden_states, is_attn_mask) | |
del hidden_states | |
# Build sparse tokens | |
if sparse_hidden_states is not None: | |
sparse_hidden_states = self.reshape_to_sparse_block(sparse_hidden_states, is_attn_mask) | |
return self.cat_global_sparse_local_tokens(global_hidden_states, sparse_hidden_states, local_hidden_states) | |
def forward( | |
self, | |
query_layer, | |
key_layer, | |
value_layer, | |
attention_mask=None, | |
sparse_key=None, | |
sparse_value=None, | |
sparse_mask=None, | |
global_key=None, | |
global_value=None, | |
global_mask=None | |
): | |
# Input batch, heads, length, hidden_size | |
n, h, t, d = query_layer.size() | |
n_blocks = t // self.block_size | |
assert t % self.block_size == 0 | |
key_layer = self.build_lsg_inputs( | |
key_layer, | |
sparse_key, | |
global_key | |
) | |
del sparse_key | |
del global_key | |
value_layer = self.build_lsg_inputs( | |
value_layer, | |
sparse_value, | |
global_value | |
) | |
del sparse_value | |
del global_value | |
attention_mask = self.build_lsg_inputs( | |
attention_mask, | |
sparse_mask, | |
global_mask.transpose(-1, -2), | |
is_attn_mask=True | |
).transpose(-1, -2) | |
del sparse_mask | |
del global_mask | |
# expect (..., t, d) shape | |
# Compute attention | |
context_layer = self.attention( | |
query_layer=self.chunk(query_layer, n_blocks), | |
key_layer=key_layer, | |
value_layer=value_layer, | |
attention_mask=attention_mask | |
) | |
return context_layer.reshape(n, h, -1, d) | |
def reshape_to_local_block(self, hidden_states, is_attn_mask=False): | |
size, step = self.local_shapes | |
s = (size - step) // 2 | |
# Pad before block reshaping | |
if is_attn_mask: | |
pad_value = torch.finfo(hidden_states.dtype).min | |
hidden_states = hidden_states.transpose(-1, -2) | |
else: | |
pad_value = 0 | |
hidden_states = torch.nn.functional.pad( | |
hidden_states.transpose(-1, -2), | |
pad=(s, s), | |
value=pad_value | |
).transpose(-1, -2) | |
# Make blocks | |
hidden_states = hidden_states.unfold(-2, size=size, step=step).transpose(-1, -2) | |
return hidden_states | |
def reshape_to_sparse_block(self, hidden_states, is_attn_mask=False): | |
size, step = self.sparse_shapes | |
# In case of odd case | |
odd_offset = (step % 2) | |
# n, h, t, d*2 + 1 | |
size = size*2 | |
s = (size - step) // 2 + odd_offset | |
# Pad before block reshaping | |
if is_attn_mask: | |
pad_value = torch.finfo(hidden_states.dtype).min | |
hidden_states = hidden_states.transpose(-1, -2) | |
else: | |
pad_value = 0 | |
hidden_states = torch.nn.functional.pad( | |
hidden_states.transpose(-1, -2), | |
pad=(s, s), | |
value=pad_value | |
).transpose(-1, -2) | |
# Make blocks | |
hidden_states = hidden_states.unfold(-2, size=size, step=step).transpose(-1, -2) | |
# Fix case where block_size == sparsify_factor | |
if odd_offset: | |
hidden_states = hidden_states[..., :-1, :, :] | |
# Indexes for selection | |
u = (size - self.block_size * 3 // self.sparsity_factor) // 2 + odd_offset | |
s = self.sparse_block_size | |
u_ = u + odd_offset | |
return torch.cat([hidden_states[..., u-s:u, :], hidden_states[..., -u_:-u_+s, :]], dim=-2) | |
def cat_global_sparse_local_tokens(self, x_global, x_sparse=None, x_local=None, dim=-2): | |
n, h, b, t, d = x_local.size() | |
x_global = x_global.unsqueeze(-3).expand(-1, -1, b, -1, -1) | |
if x_sparse is not None: | |
return torch.cat([x_global, x_sparse, x_local], dim=dim) | |
return torch.cat([x_global, x_local], dim=dim) | |
def chunk(self, x, n_blocks): | |
t, d = x.size()[-2:] | |
return x.reshape(*x.size()[:-2], n_blocks, -1, d) | |
class LSGBartEncoderAttention(BaseSelfAttention): | |
''' | |
Compute local attention with overlapping blocs | |
Use global attention for tokens with highest norm | |
''' | |
def __init__( | |
self, | |
config, | |
embed_dim, | |
num_heads, | |
dropout | |
): | |
super().__init__(embed_dim, num_heads, dropout) | |
self.block_size = config.block_size | |
self.sparse_block_size = config.sparse_block_size | |
self.num_global_tokens = config.num_global_tokens | |
self.sparsity_factor = config.sparsity_factor | |
self.attention = LSGAttentionProduct( | |
config, | |
block_size=config.block_size, | |
sparse_block_size=config.sparse_block_size, | |
sparsity_factor=self.sparsity_factor, | |
) | |
self.full_attention = BaseAttentionProduct(config) | |
sparse_functions = { | |
"norm": self.get_sparse_tokens_with_norm, | |
"pooling": self.get_sparse_tokens_with_pooling, | |
"lsh": self.get_sparse_tokens_with_lsh, | |
"stride": self.get_sparse_tokens_with_stride, | |
"block_stride": self.get_sparse_tokens_with_block_stride, | |
} | |
self.sparsity_type = config.sparsity_type | |
self.get_sparse_elements = sparse_functions.get(self.sparsity_type, lambda x, y, z: (None, None, None)) | |
if config.sparsity_type == "lsh": | |
self.lsh_num_pre_rounds = config.lsh_num_pre_rounds | |
def get_sparse_tokens_with_norm(self, keys, values, mask): | |
if self.sparsity_factor == 1: | |
return keys, values, mask.expand(-1, keys.size()[1], -1, -1) | |
with torch.no_grad(): | |
block_size = min(self.block_size, self.sparse_block_size) | |
key_norm = keys.detach().norm(dim=-1, keepdim=True) | |
key_norm = key_norm * ~mask.transpose(-1, -2).bool() | |
key_norm = self.chunk(key_norm, block_size) | |
n, h, b, t, d = key_norm.size() | |
idx = key_norm.argsort(dim=-2) | |
del key_norm | |
idx += (torch.arange(b, device=keys.device)*t).reshape(1, 1, b, 1, 1) | |
split = (t - block_size // self.sparsity_factor, block_size // self.sparsity_factor) | |
sparse_idx = idx.split(split, -2)[-1].reshape(n, h, -1, 1) | |
d = keys.size()[-1] | |
keys = keys.gather(dim=-2, index=sparse_idx.expand(-1, -1, -1, d)) | |
values = values.gather(dim=-2, index=sparse_idx.expand(-1, -1, -1, d)) | |
mask = mask.expand(-1, h, -1, -1).transpose(-1, -2).gather(dim=-2, index=sparse_idx).transpose(-1, -2) | |
return keys, values, mask | |
def get_sparse_tokens_with_pooling(self, keys, values, mask): | |
if self.sparsity_factor == 1: | |
return keys, values, mask.expand(-1, keys.size()[1], -1, -1) | |
keys = self.chunk(keys, self.sparsity_factor) | |
values = self.chunk(values, self.sparsity_factor) | |
n, h, b, t, d = keys.size() | |
mask = mask.reshape(n, 1, b, 1, t) | |
mask = ~mask.transpose(-1, -2).bool() | |
keys = keys * mask | |
values = values * mask | |
mask = mask.sum(dim=-2) | |
keys = keys.sum(dim=-2) / (mask + 1e-6) | |
values = values.sum(dim=-2) / (mask + 1e-6) | |
mask = (1. - mask.clamp(0, 1)) | |
mask *= torch.finfo(mask.dtype).min | |
return keys.reshape(n, h, -1, d), values.reshape(n, h, -1, d), mask.expand(-1, h, -1, -1).transpose(-1, -2) | |
def get_sparse_tokens_with_stride(self, keys, values, mask): | |
if self.sparsity_factor == 1: | |
return keys, values, mask.expand(-1, keys.size()[1], -1, -1) | |
n, h, t, d = keys.size() | |
sparse_idx = torch.arange(t // self.sparsity_factor, device=keys.device) * self.sparsity_factor | |
sparse_idx = sparse_idx.reshape(1, 1, -1, 1) + (torch.arange(h, device=keys.device) % self.sparsity_factor).reshape(1, h, 1, 1) | |
sparse_idx = sparse_idx.expand(n, h, -1, 1) | |
keys = keys.gather(dim=-2, index=sparse_idx.expand(-1, -1, -1, d)) | |
values = values.gather(dim=-2, index=sparse_idx.expand(-1, -1, -1, d)) | |
mask = mask.expand(-1, h, -1, -1).transpose(-1, -2).gather(dim=-2, index=sparse_idx).transpose(-1, -2) | |
return keys, values, mask | |
def get_sparse_tokens_with_block_stride(self, keys, values, mask): | |
if self.sparsity_factor == 1: | |
return keys, values, mask.expand(-1, keys.size()[1], -1, -1) | |
n, h, t, d = keys.size() | |
t, b = self.block_size, t // self.block_size | |
sparse_idx = torch.arange(t // self.sparsity_factor, device=keys.device) | |
sparse_idx = sparse_idx.reshape(1, 1, 1, -1, 1) + torch.arange(h, device=keys.device).reshape(1, h, 1, 1, 1) * (t // self.sparsity_factor) | |
sparse_idx = (sparse_idx % t) | |
sparse_idx = sparse_idx + torch.arange(b, device=keys.device).reshape(1, 1, -1, 1, 1) * t | |
sparse_idx = sparse_idx.reshape(1, h, -1, 1).expand(n, h, -1, 1) | |
keys = keys.gather(dim=-2, index=sparse_idx.expand(-1, -1, -1, d)) | |
values = values.gather(dim=-2, index=sparse_idx.expand(-1, -1, -1, d)) | |
mask = mask.expand(-1, h, -1, -1).transpose(-1, -2).gather(dim=-2, index=sparse_idx).transpose(-1, -2) | |
return keys, values, mask | |
def get_sparse_tokens_with_lsh(self, keys, values, mask): | |
if self.sparsity_factor == 1: | |
return keys, values, mask.expand(-1, keys.size()[1], -1, -1) | |
block_size = min(self.block_size, self.sparse_block_size) | |
keys = self.chunk(keys, block_size) | |
values = self.chunk(values, block_size) | |
n, h, b, t, d = keys.size() | |
mask = mask.reshape(n, 1, b, 1, t) | |
mask = ~mask.transpose(-1, -2).bool() | |
keys = keys * mask | |
values = values * mask | |
mask = mask.expand(-1, h, -1, -1, -1).float() | |
extra_factor = 1 | |
for _ in range(self.lsh_num_pre_rounds): | |
keys, values, mask = self.lsh_round(keys, values, mask, t*extra_factor) | |
keys, values, mask = self.lsh_round(keys, values, mask, t//self.sparsity_factor) | |
keys /= mask + 1e-8 | |
values /= mask + 1e-8 | |
mask = (1. - mask.clamp(0, 1)) | |
mask *= torch.finfo(mask.dtype).min | |
return keys.reshape(n, h, -1, d), values.reshape(n, h, -1, d), mask.transpose(-1, -2).reshape(n, h, 1, -1) | |
def lsh_round(self, keys, values, mask, output_size): | |
with torch.no_grad(): | |
n_hashes = output_size // 2 | |
n, h, b, t, d = keys.size() | |
binary_mask = mask.clamp(0, 1) | |
indexes = (torch.nn.functional.normalize(keys, dim=-1) * binary_mask) @ torch.randn(1, h, 1, d, n_hashes, device=keys.device) | |
indexes = torch.cat([indexes, -indexes], dim=-1).argmax(dim=-1, keepdim=True) | |
n, h, b, t, d = keys.size() | |
x_ = torch.zeros(n, h, b, output_size, d, device=keys.device) | |
mask_ = torch.zeros(n, h, b, output_size, 1, device=keys.device) | |
keys = torch.scatter_add(x_, dim=-2, index=indexes.expand(-1, -1, -1, -1, d), src=keys) | |
values = torch.scatter_add(x_, dim=-2, index=indexes.expand(-1, -1, -1, -1, d), src=values) | |
mask = torch.scatter_add(mask_, dim=-2, index=indexes, src=mask) | |
return keys[..., :output_size, :], values[..., :output_size, :], mask[..., :output_size, :] | |
def forward( | |
self, | |
hidden_states, | |
attention_mask=None, | |
layer_head_mask=None, | |
output_attentions=False | |
): | |
query_layer, key_layer, value_layer = self.project_QKV(hidden_states) | |
outputs = self.not_causal_forward( | |
query_layer, | |
key_layer, | |
value_layer, | |
attention_mask=attention_mask[:, :, :1, :], | |
head_mask=layer_head_mask, | |
output_attentions=output_attentions | |
) | |
return self.out_proj(outputs), None, None | |
def not_causal_forward( | |
self, | |
query_layer, | |
key_layer, | |
value_layer, | |
attention_mask=None, | |
head_mask=None, | |
output_attentions=False, | |
): | |
n, h, t, d = query_layer.size() | |
# Cat global mask | |
attention_mask = torch.nn.functional.pad(attention_mask, (self.num_global_tokens, 0), value=0) | |
# Use normal attention if local attention covers every tokens | |
if t <= 2 * self.block_size + self.num_global_tokens: | |
context_layer = self.full_attention( | |
query_layer=query_layer, | |
key_layer=key_layer, | |
value_layer=value_layer, | |
attention_mask=attention_mask | |
) | |
return self.reshape_output(context_layer) | |
# Split input into global tokens and other tokens | |
split = (self.num_global_tokens, t - self.num_global_tokens) | |
global_query, query_layer = query_layer.split(split, dim=-2) | |
# Get global_attention | |
bos = self.full_attention( | |
query_layer=global_query, | |
key_layer=key_layer, | |
value_layer=value_layer, | |
attention_mask=attention_mask | |
) | |
# Split K Q M on global and non global | |
global_key, key_layer = key_layer.split(split, dim=-2) | |
global_value, value_layer = value_layer.split(split, dim=-2) | |
global_mask, attention_mask = attention_mask.split(split, dim=-1) | |
n, h, t, d = key_layer.size() | |
# Get sparse idx | |
sparse_key, sparse_value, sparse_mask = (None, None, None) | |
if self.sparse_block_size and self.sparsity_factor > 0: | |
sparse_key, sparse_value, sparse_mask = self.get_sparse_elements(key_layer, value_layer, attention_mask) | |
# Expand masks on heads | |
attention_mask = attention_mask.expand(-1, h, -1, -1) | |
global_mask = global_mask.expand(-1, h, -1, -1) | |
# Compute dot product attention | |
context_layer = self.attention( | |
query_layer, | |
key_layer, | |
value_layer, | |
attention_mask, | |
sparse_key=sparse_key, | |
sparse_value=sparse_value, | |
sparse_mask=sparse_mask, | |
global_key=global_key, | |
global_value=global_value, | |
global_mask=global_mask | |
) | |
# Merge global and local-sparse tokens | |
context_layer = torch.cat([bos, context_layer], dim=-2) | |
context_layer = self.reshape_output(context_layer) | |
return context_layer | |
def chunk(self, x, chunk_size): | |
n, h, t, d = x.size() | |
return x.reshape(n, h, -1, chunk_size, d) | |
class LSGBartEncoderLayer(BartEncoderLayer): | |
def __init__(self, config): | |
super().__init__(config) | |
self.self_attn = LSGBartEncoderAttention( | |
config=config, | |
embed_dim=self.embed_dim, | |
num_heads=config.encoder_attention_heads, | |
dropout=config.attention_dropout, | |
) | |
class LSGBartPretrainedModel(BartPretrainedModel): | |
config_class = LSGBartConfig | |
def _set_gradient_checkpointing(self, module, value=False): | |
if isinstance(module, (BartDecoder, BartEncoder, LSGBartEncoder)): | |
module.gradient_checkpointing = value | |
class PretrainedLSGBartModel(LSGBartPretrainedModel): | |
def __init_subclass__(self): | |
warnings.warn( | |
"The class `PretrainedBartModel` has been depreciated, please use `LSGBartPretrainedModel` instead.", | |
FutureWarning, | |
) | |
class LSGBartEncoder(LSGBartPretrainedModel, BartEncoder): | |
""" | |
Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a | |
:class:`BartEncoderLayer`. | |
Args: | |
config: BartConfig | |
embed_tokens (nn.Embedding): output embedding | |
""" | |
def __init__(self, config, embed_tokens=None): | |
super().__init__(config) | |
self.dropout = config.dropout | |
self.layerdrop = config.encoder_layerdrop | |
embed_dim = config.d_model | |
self.padding_idx = config.pad_token_id | |
self.max_source_positions = config.max_position_embeddings | |
self.embed_scale = math.sqrt(embed_dim) if config.scale_embedding else 1.0 | |
if embed_tokens is not None: | |
self.embed_tokens = embed_tokens | |
else: | |
self.embed_tokens = nn.Embedding(config.vocab_size, embed_dim, self.padding_idx) | |
self.embed_positions = BartLearnedPositionalEmbedding( | |
config.max_position_embeddings, | |
embed_dim, | |
) | |
self.layers = nn.ModuleList([LSGBartEncoderLayer(config) for _ in range(config.encoder_layers)]) | |
self.layernorm_embedding = nn.LayerNorm(embed_dim) | |
# | |
assert hasattr(config, "num_global_tokens") | |
self.num_global_tokens = config.num_global_tokens | |
self.pad_idx = config.pad_token_id | |
assert hasattr(config, "block_size") and hasattr(config, "adaptive") | |
self.block_size = config.block_size | |
self.adaptive = config.adaptive | |
self.mask_first_token = config.mask_first_token | |
self.pool_with_global = config.pool_with_global | |
self.pass_global_tokens_to_decoder = config.pass_global_tokens_to_decoder | |
self.global_embeddings = nn.Embedding(512, embedding_dim=config.d_model) | |
self.gradient_checkpointing = False | |
# Initialize weights and apply final processing | |
self.post_init() | |
def forward(self, | |
input_ids=None, | |
attention_mask=None, | |
head_mask=None, | |
inputs_embeds=None, | |
output_attentions=None, | |
output_hidden_states=None, | |
return_dict=None | |
): | |
inputs_ = input_ids if input_ids is not None else inputs_embeds | |
n, t = inputs_.size()[:2] | |
if attention_mask is None: | |
attention_mask = torch.ones(n, t, device=inputs_.device, dtype=inputs_.dtype) | |
if self.mask_first_token: | |
attention_mask[:, 0] = 0 | |
b = self.block_size * 2 | |
pad = t % self.block_size | |
# Check if t is multiple of block_size and pad | |
if self.adaptive and t > b and pad > 0: | |
pad_length = self.block_size - pad | |
if input_ids is not None: | |
input_ids = torch.nn.functional.pad(input_ids, (0, pad_length), value=self.pad_idx) | |
else: | |
inputs_embeds = torch.nn.functional.pad(inputs_embeds.transpose(-1, -2), (0, pad_length), value=0.).transpose(-1, -2) | |
attention_mask = torch.nn.functional.pad(attention_mask, (0, pad_length), value=0) | |
n, t_ = attention_mask.size() | |
encoder_outputs = self.forward_with_adaptive( | |
input_ids=input_ids, | |
attention_mask=attention_mask, | |
head_mask=head_mask, | |
inputs_embeds=inputs_embeds, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
context = encoder_outputs[0] | |
diff = t - t_ | |
if self.pass_global_tokens_to_decoder: | |
offset = self.num_global_tokens | |
else: | |
if self.pool_with_global: | |
context[:, self.num_global_tokens] = context[:, 0] | |
context = context[..., self.num_global_tokens:, :] | |
offset = 0 | |
# Adapt sequence to initial shape | |
if diff < 0: | |
context = context[:, :t + offset] | |
if return_dict: | |
encoder_outputs.last_hidden_state = context | |
else: | |
encoder_outputs = (context, ) + encoder_outputs[1:] | |
return encoder_outputs | |
def forward_with_adaptive( | |
self, | |
input_ids=None, | |
attention_mask=None, | |
head_mask=None, | |
inputs_embeds=None, | |
output_attentions=None, | |
output_hidden_states=None, | |
return_dict=None, | |
): | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
# retrieve input_ids and inputs_embeds | |
if input_ids is not None and inputs_embeds is not None: | |
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") | |
elif input_ids is not None: | |
input_shape = input_ids.size() | |
input_ids = input_ids.view(-1, input_shape[-1]) | |
elif inputs_embeds is not None: | |
input_shape = inputs_embeds.size()[:-1] | |
else: | |
raise ValueError("You have to specify either input_ids or inputs_embeds") | |
if inputs_embeds is None: | |
inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale | |
embed_pos = self.embed_positions(inputs_embeds) | |
hidden_states = inputs_embeds + embed_pos | |
# Add global tokens | |
n, t, d = hidden_states.size() | |
global_idx = torch.arange(self.num_global_tokens, device=hidden_states.device).reshape(1, -1) | |
hidden_states = torch.cat([self.global_embeddings(global_idx).expand(n, -1, -1), hidden_states], dim=-2) | |
hidden_states = self.layernorm_embedding(hidden_states) | |
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) | |
# expand attention_mask | |
if attention_mask is not None: | |
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] | |
attention_mask = _expand_mask(attention_mask, inputs_embeds.dtype) | |
encoder_states = () if output_hidden_states else None | |
all_attentions = () if output_attentions else None | |
# check if head_mask has a correct number of layers specified if desired | |
if head_mask is not None: | |
if head_mask.size()[0] != (len(self.layers)): | |
raise ValueError( | |
f"The head_mask should be specified for {len(self.layers)} layers, but it is for {head_mask.size()[0]}." | |
) | |
for idx, encoder_layer in enumerate(self.layers): | |
if output_hidden_states: | |
encoder_states = encoder_states + (hidden_states,) | |
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) | |
dropout_probability = random.uniform(0, 1) | |
if self.training and (dropout_probability < self.layerdrop): # skip the layer | |
layer_outputs = (None, None) | |
else: | |
if self.gradient_checkpointing and self.training: | |
def create_custom_forward(module): | |
def custom_forward(*inputs): | |
return module(*inputs, output_attentions) | |
return custom_forward | |
layer_outputs = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(encoder_layer), | |
hidden_states, | |
attention_mask, | |
(head_mask[idx] if head_mask is not None else None), | |
) | |
else: | |
layer_outputs = encoder_layer( | |
hidden_states, | |
attention_mask, | |
layer_head_mask=(head_mask[idx] if head_mask is not None else None), | |
output_attentions=output_attentions, | |
) | |
hidden_states = layer_outputs[0] | |
if output_attentions: | |
all_attentions = all_attentions + (layer_outputs[1],) | |
if output_hidden_states: | |
encoder_states = encoder_states + (hidden_states,) | |
if not return_dict: | |
return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None) | |
return BaseModelOutput( | |
last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions | |
) | |
class LSGBartModel(LSGBartPretrainedModel, BartModel): | |
def __init__(self, config): | |
LSGBartPretrainedModel.__init__(self, config) | |
padding_idx, vocab_size = config.pad_token_id, config.vocab_size | |
self.shared = nn.Embedding(vocab_size, config.d_model, padding_idx) | |
self.pass_global_tokens_to_decoder = config.pass_global_tokens_to_decoder | |
self.num_global_tokens = config.num_global_tokens | |
self.encoder = LSGBartEncoder(config, self.shared) | |
self.decoder = BartDecoder(config, self.shared) | |
# Initialize weights and apply final processing | |
self.post_init() | |
def forward( | |
self, | |
input_ids=None, | |
attention_mask=None, | |
decoder_input_ids=None, | |
decoder_attention_mask=None, | |
head_mask=None, | |
decoder_head_mask=None, | |
cross_attn_head_mask=None, | |
encoder_outputs=None, | |
past_key_values=None, | |
inputs_embeds=None, | |
decoder_inputs_embeds=None, | |
use_cache=None, | |
output_attentions=None, | |
output_hidden_states=None, | |
return_dict=None, | |
): | |
# different to other models, Bart automatically creates decoder_input_ids from | |
# input_ids if no decoder_input_ids are provided | |
if decoder_input_ids is None and decoder_inputs_embeds is None: | |
decoder_input_ids = shift_tokens_right( | |
input_ids, self.config.pad_token_id, self.config.decoder_start_token_id | |
) | |
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions | |
output_hidden_states = ( | |
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states | |
) | |
use_cache = use_cache if use_cache is not None else self.config.use_cache | |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict | |
if encoder_outputs is None: | |
encoder_outputs = self.encoder( | |
input_ids=input_ids, | |
attention_mask=attention_mask, | |
head_mask=head_mask, | |
inputs_embeds=inputs_embeds, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
# If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True | |
elif return_dict and not isinstance(encoder_outputs, BaseModelOutput): | |
encoder_outputs = BaseModelOutput( | |
last_hidden_state=encoder_outputs[0], | |
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None, | |
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None, | |
) | |
# Pad mask for global tokens | |
if self.pass_global_tokens_to_decoder and attention_mask is not None: | |
attention_mask = torch.nn.functional.pad(attention_mask, pad=(self.num_global_tokens, 0), value=1) | |
# decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn) | |
decoder_outputs = self.decoder( | |
input_ids=decoder_input_ids, | |
attention_mask=decoder_attention_mask, | |
encoder_hidden_states=encoder_outputs[0], | |
encoder_attention_mask=attention_mask, | |
head_mask=decoder_head_mask, | |
cross_attn_head_mask=cross_attn_head_mask, | |
past_key_values=past_key_values, | |
inputs_embeds=decoder_inputs_embeds, | |
use_cache=use_cache, | |
output_attentions=output_attentions, | |
output_hidden_states=output_hidden_states, | |
return_dict=return_dict, | |
) | |
if not return_dict: | |
return decoder_outputs + encoder_outputs | |
return Seq2SeqModelOutput( | |
last_hidden_state=decoder_outputs.last_hidden_state, | |
past_key_values=decoder_outputs.past_key_values, | |
decoder_hidden_states=decoder_outputs.hidden_states, | |
decoder_attentions=decoder_outputs.attentions, | |
cross_attentions=decoder_outputs.cross_attentions, | |
encoder_last_hidden_state=encoder_outputs.last_hidden_state, | |
encoder_hidden_states=encoder_outputs.hidden_states, | |
encoder_attentions=encoder_outputs.attentions, | |
) | |
class LSGBartForConditionalGeneration(LSGBartPretrainedModel, BartForConditionalGeneration): | |
base_model_prefix = "model" | |
_keys_to_ignore_on_load_missing = [r"final_logits_bias", r"lm_head\.weight"] | |
def __init__(self, config): | |
LSGBartPretrainedModel.__init__(self, config) | |
self.model = LSGBartModel(config) | |
self.register_buffer("final_logits_bias", torch.zeros((1, self.model.shared.num_embeddings))) | |
self.lm_head = nn.Linear(config.d_model, self.model.shared.num_embeddings, bias=False) | |
# Initialize weights and apply final processing | |
self.post_init() | |
class LSGBartForSequenceClassification(LSGBartPretrainedModel, BartForSequenceClassification): | |
def __init__(self, config: LSGBartConfig, **kwargs): | |
LSGBartPretrainedModel.__init__(self, config, **kwargs) | |
self.model = LSGBartModel(config) | |
self.classification_head = BartClassificationHead( | |
config.d_model, | |
config.d_model, | |
config.num_labels, | |
config.classifier_dropout, | |
) | |
self.model._init_weights(self.classification_head.dense) | |
self.model._init_weights(self.classification_head.out_proj) | |
class LSGBartForQuestionAnswering(LSGBartPretrainedModel, BartForQuestionAnswering): | |
def __init__(self, config: LSGBartConfig): | |
LSGBartPretrainedModel.__init__(self, config) | |
config.num_labels = 2 | |
self.num_labels = config.num_labels | |
self.model = LSGBartModel(config) | |
self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels) | |
self.model._init_weights(self.qa_outputs) | |
class LSGBartForCausalLM(LSGBartPretrainedModel, BartForCausalLM): | |
def __init__(self, config: LSGBartConfig): | |
LSGBartPretrainedModel.__init__(self, config) | |
BartForCausalLM.__init__(self, config) | |
def str_to_class(classname): | |
return getattr(sys.modules[__name__], classname) | |
# Register model in Auto API | |
try: | |
LSGBartConfig.register_for_auto_class() | |
for key, value in AUTO_MAP.items(): | |
str_to_class(value.split(".")[-1]).register_for_auto_class(key) | |
except: | |
warn("AutoRegister isn't available, you'll have to manually copy modeling.py after .save_pretrained(...).") | |
warn("Update to transformers >= 4.23.1 to fix.") |