dheeraj1019
commited on
Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,121 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: afl-3.0
|
3 |
+
datasets:
|
4 |
+
- HuggingFaceTB/cosmopedia
|
5 |
+
metrics:
|
6 |
+
- accuracy
|
7 |
+
library_name: adapter-transformers
|
8 |
+
pipeline_tag: text-classification
|
9 |
+
tags:
|
10 |
+
- code
|
11 |
+
---
|
12 |
+
# Install the necessary libraries
|
13 |
+
!pip install transformers
|
14 |
+
!pip install torch
|
15 |
+
|
16 |
+
import torch
|
17 |
+
from transformers import RobertaTokenizer, RobertaForSequenceClassification, XLNetTokenizer, XLNetForSequenceClassification
|
18 |
+
from transformers import Trainer, TrainingArguments
|
19 |
+
from sklearn.model_selection import train_test_split
|
20 |
+
import numpy as np
|
21 |
+
from sklearn.metrics import accuracy_score, precision_recall_fscore_support
|
22 |
+
|
23 |
+
# Example dataset for text classification (replace with your own dataset)
|
24 |
+
texts = [...] # List of input texts
|
25 |
+
labels = [...] # List of corresponding labels (0 or 1 for binary classification)
|
26 |
+
|
27 |
+
# Split the dataset into training and testing sets
|
28 |
+
train_texts, test_texts, train_labels, test_labels = train_test_split(texts, labels, test_size=0.2, random_state=42)
|
29 |
+
|
30 |
+
# Define the tokenizer and model for RoBERTa
|
31 |
+
roberta_tokenizer = RobertaTokenizer.from_pretrained("roberta-base")
|
32 |
+
roberta_model = RobertaForSequenceClassification.from_pretrained("roberta-base")
|
33 |
+
|
34 |
+
# Define the tokenizer and model for XLNet
|
35 |
+
xlnet_tokenizer = XLNetTokenizer.from_pretrained("xlnet-base-cased")
|
36 |
+
xlnet_model = XLNetForSequenceClassification.from_pretrained("xlnet-base-cased")
|
37 |
+
|
38 |
+
# Tokenize and encode the training and testing sets
|
39 |
+
train_encodings_roberta = roberta_tokenizer(train_texts, truncation=True, padding=True)
|
40 |
+
test_encodings_roberta = roberta_tokenizer(test_texts, truncation=True, padding=True)
|
41 |
+
|
42 |
+
train_encodings_xlnet = xlnet_tokenizer(train_texts, truncation=True, padding=True)
|
43 |
+
test_encodings_xlnet = xlnet_tokenizer(test_texts, truncation=True, padding=True)
|
44 |
+
|
45 |
+
class MyDataset(torch.utils.data.Dataset):
|
46 |
+
def __init__(self, encodings, labels):
|
47 |
+
self.encodings = encodings
|
48 |
+
self.labels = labels
|
49 |
+
|
50 |
+
def __getitem__(self, idx):
|
51 |
+
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
|
52 |
+
item['labels'] = torch.tensor(self.labels[idx])
|
53 |
+
return item
|
54 |
+
|
55 |
+
def __len__(self):
|
56 |
+
return len(self.labels)
|
57 |
+
|
58 |
+
train_dataset_roberta = MyDataset(train_encodings_roberta, train_labels)
|
59 |
+
test_dataset_roberta = MyDataset(test_encodings_roberta, test_labels)
|
60 |
+
|
61 |
+
train_dataset_xlnet = MyDataset(train_encodings_xlnet, train_labels)
|
62 |
+
test_dataset_xlnet = MyDataset(test_encodings_xlnet, test_labels)
|
63 |
+
|
64 |
+
# Fine-tune RoBERTa model
|
65 |
+
training_args = TrainingArguments(
|
66 |
+
per_device_train_batch_size=8,
|
67 |
+
per_device_eval_batch_size=8,
|
68 |
+
num_train_epochs=3,
|
69 |
+
logging_dir='./logs',
|
70 |
+
logging_steps=10,
|
71 |
+
)
|
72 |
+
|
73 |
+
trainer_roberta = Trainer(
|
74 |
+
model=roberta_model,
|
75 |
+
args=training_args,
|
76 |
+
train_dataset=train_dataset_roberta,
|
77 |
+
eval_dataset=test_dataset_roberta,
|
78 |
+
)
|
79 |
+
|
80 |
+
trainer_roberta.train()
|
81 |
+
|
82 |
+
# Fine-tune XLNet model
|
83 |
+
trainer_xlnet = Trainer(
|
84 |
+
model=xlnet_model,
|
85 |
+
args=training_args,
|
86 |
+
train_dataset=train_dataset_xlnet,
|
87 |
+
eval_dataset=test_dataset_xlnet,
|
88 |
+
)
|
89 |
+
|
90 |
+
trainer_xlnet.train()
|
91 |
+
|
92 |
+
# Evaluate models
|
93 |
+
def evaluate_model(model, test_dataset):
|
94 |
+
predictions = []
|
95 |
+
labels = []
|
96 |
+
for batch in test_dataset:
|
97 |
+
input_ids = batch['input_ids'].to(model.device)
|
98 |
+
attention_mask = batch['attention_mask'].to(model.device)
|
99 |
+
labels.extend(batch['labels'].tolist())
|
100 |
+
with torch.no_grad():
|
101 |
+
outputs = model(input_ids, attention_mask=attention_mask)
|
102 |
+
logits = outputs.logits
|
103 |
+
predictions.extend(torch.argmax(logits, axis=1).tolist())
|
104 |
+
accuracy = accuracy_score(labels, predictions)
|
105 |
+
precision, recall, f1, _ = precision_recall_fscore_support(labels, predictions, average='binary')
|
106 |
+
return accuracy, precision, recall, f1
|
107 |
+
|
108 |
+
accuracy_roberta, precision_roberta, recall_roberta, f1_roberta = evaluate_model(roberta_model, test_dataset_roberta)
|
109 |
+
accuracy_xlnet, precision_xlnet, recall_xlnet, f1_xlnet = evaluate_model(xlnet_model, test_dataset_xlnet)
|
110 |
+
|
111 |
+
print("RoBERTa Model Evaluation:")
|
112 |
+
print(f"Accuracy: {accuracy_roberta}")
|
113 |
+
print(f"Precision: {precision_roberta}")
|
114 |
+
print(f"Recall: {recall_roberta}")
|
115 |
+
print(f"F1 Score: {f1_roberta}")
|
116 |
+
|
117 |
+
print("\nXLNet Model Evaluation:")
|
118 |
+
print(f"Accuracy: {accuracy_xlnet}")
|
119 |
+
print(f"Precision: {precision_xlnet}")
|
120 |
+
print(f"Recall: {recall_xlnet}")
|
121 |
+
print(f"F1 Score: {f1_xlnet}")
|