File size: 2,094 Bytes
485bfa0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
---
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: vit-base-brain-alzheimer-detection
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# vit-base-brain-alzheimer-detection
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2360
- Accuracy: 0.9523
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 20
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-------:|:----:|:---------------:|:--------:|
| 0.7278 | 1.9531 | 500 | 0.7124 | 0.7051 |
| 0.3023 | 3.9062 | 1000 | 0.3776 | 0.8828 |
| 0.0997 | 5.8594 | 1500 | 0.2808 | 0.9131 |
| 0.0424 | 7.8125 | 2000 | 0.1914 | 0.9570 |
| 0.0108 | 9.7656 | 2500 | 0.4534 | 0.8945 |
| 0.0088 | 11.7188 | 3000 | 0.1554 | 0.9580 |
| 0.0051 | 13.6719 | 3500 | 0.1666 | 0.9590 |
| 0.0039 | 15.625 | 4000 | 0.1544 | 0.9648 |
| 0.0034 | 17.5781 | 4500 | 0.1575 | 0.9648 |
| 0.003 | 19.5312 | 5000 | 0.1592 | 0.9658 |
### Framework versions
- Transformers 4.42.4
- Pytorch 2.4.0+cu121
- Datasets 2.21.0
- Tokenizers 0.19.1
|