--- license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_trainer metrics: - accuracy model-index: - name: vit-base-brain-alzheimer-detection results: [] --- # vit-base-brain-alzheimer-detection This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2360 - Accuracy: 0.9523 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-------:|:----:|:---------------:|:--------:| | 0.7278 | 1.9531 | 500 | 0.7124 | 0.7051 | | 0.3023 | 3.9062 | 1000 | 0.3776 | 0.8828 | | 0.0997 | 5.8594 | 1500 | 0.2808 | 0.9131 | | 0.0424 | 7.8125 | 2000 | 0.1914 | 0.9570 | | 0.0108 | 9.7656 | 2500 | 0.4534 | 0.8945 | | 0.0088 | 11.7188 | 3000 | 0.1554 | 0.9580 | | 0.0051 | 13.6719 | 3500 | 0.1666 | 0.9590 | | 0.0039 | 15.625 | 4000 | 0.1544 | 0.9648 | | 0.0034 | 17.5781 | 4500 | 0.1575 | 0.9648 | | 0.003 | 19.5312 | 5000 | 0.1592 | 0.9658 | ### Framework versions - Transformers 4.42.4 - Pytorch 2.4.0+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1