--- license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_trainer metrics: - accuracy model-index: - name: vit-base-brain-alzheimer-detection results: [] --- # vit-base-brain-alzheimer-detection This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2301 - Accuracy: 0.9555 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-------:|:----:|:---------------:|:--------:| | 0.4285 | 1.9531 | 500 | 0.4633 | 0.8311 | | 0.171 | 3.9062 | 1000 | 0.3237 | 0.8994 | | 0.0622 | 5.8594 | 1500 | 0.2032 | 0.9414 | | 0.0162 | 7.8125 | 2000 | 0.2413 | 0.9512 | | 0.0044 | 9.7656 | 2500 | 0.1623 | 0.9668 | | 0.003 | 11.7188 | 3000 | 0.1641 | 0.9668 | | 0.0025 | 13.6719 | 3500 | 0.1796 | 0.9619 | | 0.0019 | 15.625 | 4000 | 0.1892 | 0.9590 | ### Framework versions - Transformers 4.42.4 - Pytorch 2.4.0+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1