--- license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_trainer metrics: - accuracy model-index: - name: vit-base-brain-dementia-detection1 results: [] --- # vit-base-brain-dementia-detection1 This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2209 - Accuracy: 0.9516 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-------:|:----:|:---------------:|:--------:| | 0.7193 | 1.9531 | 500 | 0.7950 | 0.6592 | | 0.249 | 3.9062 | 1000 | 0.3423 | 0.9023 | | 0.0774 | 5.8594 | 1500 | 0.1845 | 0.9492 | | 0.0306 | 7.8125 | 2000 | 0.1809 | 0.9570 | | 0.0099 | 9.7656 | 2500 | 0.1198 | 0.9717 | | 0.0065 | 11.7188 | 3000 | 0.1497 | 0.9648 | | 0.0053 | 13.6719 | 3500 | 0.1477 | 0.9668 | | 0.004 | 15.625 | 4000 | 0.1585 | 0.9629 | ### Framework versions - Transformers 4.42.4 - Pytorch 2.3.1+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1