--- base_model: cardiffnlp/twitter-roberta-base-irony tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: twitter-roberta-base_3epoch10.32 results: [] --- # twitter-roberta-base_3epoch10.32 This model is a fine-tuned version of [cardiffnlp/twitter-roberta-base-irony](https://huggingface.co/cardiffnlp/twitter-roberta-base-irony) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.2125 - Accuracy: 0.7450 - F1: 0.4 - Precision: 0.6146 - Recall: 0.2965 - Precision Sarcastic: 0.6146 - Recall Sarcastic: 0.2965 - F1 Sarcastic: 0.4 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | Precision Sarcastic | Recall Sarcastic | F1 Sarcastic | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|:-------------------:|:----------------:|:------------:| | No log | 1.0 | 87 | 1.9011 | 0.7464 | 0.5138 | 0.5706 | 0.4673 | 0.5706 | 0.4673 | 0.5138 | | No log | 2.0 | 174 | 2.0529 | 0.7579 | 0.4510 | 0.6449 | 0.3467 | 0.6449 | 0.3467 | 0.4510 | | No log | 3.0 | 261 | 1.6275 | 0.7594 | 0.4862 | 0.6270 | 0.3970 | 0.6270 | 0.3970 | 0.4862 | | No log | 4.0 | 348 | 2.1947 | 0.7550 | 0.3796 | 0.6933 | 0.2613 | 0.6933 | 0.2613 | 0.3796 | | No log | 5.0 | 435 | 1.9559 | 0.7522 | 0.4971 | 0.5944 | 0.4271 | 0.5944 | 0.4271 | 0.4971 | | 0.0241 | 6.0 | 522 | 2.1438 | 0.7478 | 0.3902 | 0.6364 | 0.2814 | 0.6364 | 0.2814 | 0.3902 | | 0.0241 | 7.0 | 609 | 2.0612 | 0.7550 | 0.4817 | 0.6124 | 0.3970 | 0.6124 | 0.3970 | 0.4817 | | 0.0241 | 8.0 | 696 | 2.1265 | 0.7565 | 0.4601 | 0.6316 | 0.3618 | 0.6316 | 0.3618 | 0.4601 | | 0.0241 | 9.0 | 783 | 2.2016 | 0.7464 | 0.4054 | 0.6186 | 0.3015 | 0.6186 | 0.3015 | 0.4054 | | 0.0241 | 10.0 | 870 | 2.2125 | 0.7450 | 0.4 | 0.6146 | 0.2965 | 0.6146 | 0.2965 | 0.4 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1