kamilakesbi
commited on
End of training
Browse files- README.md +22 -17
- emissions.csv +2 -0
README.md
CHANGED
@@ -1,8 +1,6 @@
|
|
1 |
---
|
2 |
-
|
3 |
-
-
|
4 |
-
license: apache-2.0
|
5 |
-
base_model: openai/whisper-small
|
6 |
tags:
|
7 |
- speaker-diarization
|
8 |
- speaker-segmentation
|
@@ -19,17 +17,13 @@ should probably proofread and complete it, then remove this comment. -->
|
|
19 |
|
20 |
# speaker-segmentation-fine-tuned-callhome-jpn
|
21 |
|
22 |
-
This model is a fine-tuned version of [
|
23 |
It achieves the following results on the evaluation set:
|
24 |
-
-
|
25 |
-
-
|
26 |
-
-
|
27 |
-
-
|
28 |
-
-
|
29 |
-
- eval_runtime: 80.4369
|
30 |
-
- eval_samples_per_second: 8.64
|
31 |
-
- eval_steps_per_second: 0.274
|
32 |
-
- step: 0
|
33 |
|
34 |
## Model description
|
35 |
|
@@ -54,11 +48,22 @@ The following hyperparameters were used during training:
|
|
54 |
- seed: 42
|
55 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
56 |
- lr_scheduler_type: cosine
|
57 |
-
- num_epochs: 5
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
|
59 |
### Framework versions
|
60 |
|
61 |
- Transformers 4.40.0
|
62 |
-
- Pytorch 2.2.
|
63 |
-
- Datasets 2.
|
64 |
- Tokenizers 0.19.1
|
|
|
1 |
---
|
2 |
+
license: mit
|
3 |
+
base_model: pyannote/segmentation-3.0
|
|
|
|
|
4 |
tags:
|
5 |
- speaker-diarization
|
6 |
- speaker-segmentation
|
|
|
17 |
|
18 |
# speaker-segmentation-fine-tuned-callhome-jpn
|
19 |
|
20 |
+
This model is a fine-tuned version of [pyannote/segmentation-3.0](https://huggingface.co/pyannote/segmentation-3.0) on the diarizers-community/callhome jpn dataset.
|
21 |
It achieves the following results on the evaluation set:
|
22 |
+
- Loss: 0.5957
|
23 |
+
- Der: 0.1975
|
24 |
+
- False Alarm: 0.0777
|
25 |
+
- Missed Detection: 0.0713
|
26 |
+
- Confusion: 0.0485
|
|
|
|
|
|
|
|
|
27 |
|
28 |
## Model description
|
29 |
|
|
|
48 |
- seed: 42
|
49 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
50 |
- lr_scheduler_type: cosine
|
51 |
+
- num_epochs: 5.0
|
52 |
+
|
53 |
+
### Training results
|
54 |
+
|
55 |
+
| Training Loss | Epoch | Step | Validation Loss | Der | False Alarm | Missed Detection | Confusion |
|
56 |
+
|:-------------:|:-----:|:----:|:---------------:|:------:|:-----------:|:----------------:|:---------:|
|
57 |
+
| 0.5998 | 1.0 | 336 | 0.6155 | 0.2067 | 0.0726 | 0.0792 | 0.0549 |
|
58 |
+
| 0.578 | 2.0 | 672 | 0.6258 | 0.2086 | 0.0851 | 0.0691 | 0.0544 |
|
59 |
+
| 0.5431 | 3.0 | 1008 | 0.6054 | 0.2023 | 0.0830 | 0.0689 | 0.0505 |
|
60 |
+
| 0.5198 | 4.0 | 1344 | 0.5989 | 0.1984 | 0.0762 | 0.0729 | 0.0494 |
|
61 |
+
| 0.5211 | 5.0 | 1680 | 0.5957 | 0.1975 | 0.0777 | 0.0713 | 0.0485 |
|
62 |
+
|
63 |
|
64 |
### Framework versions
|
65 |
|
66 |
- Transformers 4.40.0
|
67 |
+
- Pytorch 2.2.2+cu121
|
68 |
+
- Datasets 2.18.0
|
69 |
- Tokenizers 0.19.1
|
emissions.csv
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
timestamp,experiment_id,project_name,duration,emissions,energy_consumed,country_name,country_iso_code,region,on_cloud,cloud_provider,cloud_region
|
2 |
+
2024-04-20T16:46:40,f247ee22-7a72-4405-80cf-efae1836a21e,codecarbon,220.32588934898376,0.0010399341439828672,0.002449301710285461,France,FRA,île-de-france,N,,
|