File size: 1,671 Bytes
1b2806b 2c00e7a d6cbc02 1b2806b 2c00e7a 59a553d 2c00e7a 3afd812 2c00e7a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 |
---
license: cc-by-4.0
language:
- he
inference: false
---
# DictaBERT: A State-of-the-Art BERT Suite for Modern Hebrew
State-of-the-art language model for Hebrew, as released [here](link to arxiv).
This is the fine-tuned model for the prefix segmentation task.
Sample usage:
```python
from transformers import AutoModel, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('dicta-il/dictabert-seg')
model = AutoModel.from_pretrained('dicta-il/dictabert-seg', trust_remote_code=True)
model.eval()
sentence = '讘砖谞转 1948 讛砖诇讬诐 讗驻专讬诐 拽讬砖讜谉 讗转 诇讬诪讜讚讬讜 讘驻讬住讜诇 诪转讻转 讜讘转讜诇讚讜转 讛讗诪谞讜转 讜讛讞诇 诇驻专住诐 诪讗诪专讬诐 讛讜诪讜专讬住讟讬讬诐'
print(model.predict([sentence], tokenizer))
```
Output:
```json
[
[
[ "[CLS]" ],
[ "讘","砖谞转" ],
[ "1948" ],
[ "讛砖诇讬诐" ],
[ "讗驻专讬诐" ],
[ "拽讬砖讜谉" ],
[ "讗转" ],
[ "诇讬诪讜讚讬讜" ],
[ "讘","驻讬住讜诇" ],
[ "诪转讻转" ],
[ "讜讘","转讜诇讚讜转" ],
[ "讛","讗诪谞讜转" ],
[ "讜","讛讞诇" ],
[ "诇驻专住诐" ],
[ "诪讗诪专讬诐" ],
[ "讛讜诪讜专讬住讟讬讬诐" ],
[ "[SEP]" ]
]
]
```
## Citation
If you use DictaBERT in your research, please cite ```DictaBERT: A State-of-the-Art BERT Suite for Modern Hebrew```
**BibTeX:**
To add
## License
Shield: [![CC BY 4.0][cc-by-shield]][cc-by]
This work is licensed under a
[Creative Commons Attribution 4.0 International License][cc-by].
[![CC BY 4.0][cc-by-image]][cc-by]
[cc-by]: http://creativecommons.org/licenses/by/4.0/
[cc-by-image]: https://i.creativecommons.org/l/by/4.0/88x31.png
[cc-by-shield]: https://img.shields.io/badge/License-CC%20BY%204.0-lightgrey.svg
|