--- license: apache-2.0 pipeline_tag: text-generation language: - en - he tags: - pretrained --- [](https://dicta.org.il) # Model Card for DictaLM-2.0-AWQ The DictaLM-2.0 Large Language Model (LLM) is a pretrained generative text model with 7 billion parameters trained to specialize in Hebrew text. For full details of this model please read our [release blog post](https://example.com). This model contains the GPTQ 4-bit quantized version of the base model [DictaLM-2.0](https://huggingface.co/dicta-il/dictalm2.0). You can view and access the full collection of base/instruct unquantized/quantized versions of `DictaLM-2.0` [here](https://huggingface.co/collections/dicta-il/dicta-lm-20-collection-661bbda397df671e4a430c27). ## Example Code Running this code requires ~5.1GB of GPU VRAM. ```python from transformers import pipeline # This loads the model onto the GPU in bfloat16 precision model = pipeline('text-generation', 'dicta-il/dictalm2.0-GPTQ', device_map='cuda') # Sample few shot examples prompt = """ עבר: הלכתי עתיד: אלך עבר: שמרתי עתיד: אשמור עבר: שמעתי עתיד: אשמע עבר: הבנתי עתיד: """ print(model(prompt.strip(), do_sample=False, max_new_tokens=4, stop_sequence='\n')) # [{'generated_text': 'עבר: הלכתי\nעתיד: אלך\n\nעבר: שמרתי\nעתיד: אשמור\n\nעבר: שמעתי\nעתיד: אשמע\n\nעבר: הבנתי\nעתיד: אבין\n\n'}] ``` ## Model Architecture DictaLM-2.0 is based on the [Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) model with the following changes: - An extended tokenizer with tokens for Hebrew, increasing the compression ratio - An extended tokenizer with 1,000 injected tokens specifically for Hebrew, increasing the compression rate from 5.78 tokens/word to 2.76 tokens/word. ## Notice DictaLM 2.0 is a pretrained base model and therefore does not have any moderation mechanisms. ## Citation If you use this model, please cite: ```bibtex [Will be added soon] ```