--- license: apache-2.0 pipeline_tag: text-generation language: - en - he tags: - pretrained inference: parameters: temperature: 0.7 --- [](https://dicta.org.il) # Model Card for DictaLM-2.0 The DictaLM-2.0 Large Language Model (LLM) is a pretrained generative text model with 7 billion parameters trained to specialize in Hebrew text. For full details of this model please read our [release blog post](https://dicta.org.il/dicta-lm). This is the full-precision base model. You can view and access the full collection of base/instruct unquantized/quantized versions of `DictaLM-2.0` [here](https://huggingface.co/collections/dicta-il/dicta-lm-20-collection-661bbda397df671e4a430c27). ## Example Code ```python from transformers import pipeline import torch # This loads the model onto the GPU in bfloat16 precision model = pipeline('text-generation', 'dicta-il/dictalm2.0', torch_dtype=torch.bfloat16, device_map='cuda') # Sample few shot examples prompt = """ עבר: הלכתי עתיד: אלך עבר: שמרתי עתיד: אשמור עבר: שמעתי עתיד: אשמע עבר: הבנתי עתיד: """ print(model(prompt.strip(), do_sample=False, max_new_tokens=8, stop_sequence='\n')) # [{'generated_text': 'עבר: הלכתי\nעתיד: אלך\n\nעבר: שמרתי\nעתיד: אשמור\n\nעבר: שמעתי\nעתיד: אשמע\n\nעבר: הבנתי\nעתיד: אבין\n\n'}] ``` ## Example Code - 4-Bit There are already pre-quantized 4-bit models using the `GPTQ` and `AWQ` methods available for use: [DictaLM-2.0-AWQ](https://huggingface.co/dicta-il/dictalm2.0-AWQ) and [DictaLM-2.0-GPTQ](https://huggingface.co/dicta-il/dictalm2.0-GPTQ). For dynamic quantization on the go, here is sample code which loads the model onto the GPU using the `bitsandbytes` package, requiring : ```python from transformers import AutoModelForCausalLM, AutoTokenizer import torch model = AutoModelForCausalLM.from_pretrained('dicta-il/dictalm2.0', torch_dtype=torch.bfloat16, device_map='cuda', load_in_4bit=True) tokenizer = AutoTokenizer.from_pretrained('dicta-il/dictalm2.0') prompt = """ עבר: הלכתי עתיד: אלך עבר: שמרתי עתיד: אשמור עבר: שמעתי עתיד: אשמע עבר: הבנתי עתיד: """ encoded = tokenizer(prompt.strip(), return_tensors='pt').to(model.device) print(tokenizer.batch_decode(model.generate(**encoded, do_sample=False, max_new_tokens=4))) # [' עבר: הלכתי\nעתיד: אלך\n\nעבר: שמרתי\nעתיד: אשמור\n\nעבר: שמעתי\nעתיד: אשמע\n\nעבר: הבנתי\nעתיד: אבין\n\n'] ``` ## Model Architecture DictaLM-2.0 is based on the [Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) model with the following changes: - An extended tokenizer with 1,000 injected tokens specifically for Hebrew, increasing the compression rate from 5.78 tokens/word to 2.76 tokens/word. - Continued pretraining on over 190B tokens of naturally occuring text, 50% Hebrew and 50% English. ## Notice DictaLM 2.0 is a pretrained base model and therefore does not have any moderation mechanisms. ## Citation If you use this model, please cite: ```bibtex [Will be added soon] ```