didiudom94 commited on
Commit
ea1f85c
·
verified ·
1 Parent(s): ba3373d

End of training

Browse files
Files changed (1) hide show
  1. README.md +82 -0
README.md ADDED
@@ -0,0 +1,82 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: transformers
3
+ language:
4
+ - ko
5
+ license: apache-2.0
6
+ base_model: openai/whisper-small
7
+ tags:
8
+ - generated_from_trainer
9
+ datasets:
10
+ - didiudom94/gentlemen
11
+ metrics:
12
+ - bleu
13
+ model-index:
14
+ - name: Whisper Small Ko to En
15
+ results:
16
+ - task:
17
+ name: Automatic Speech Recognition
18
+ type: automatic-speech-recognition
19
+ dataset:
20
+ name: Gentlemen
21
+ type: didiudom94/gentlemen
22
+ args: 'split: train'
23
+ metrics:
24
+ - name: Bleu
25
+ type: bleu
26
+ value: 0.1392438982977928
27
+ ---
28
+
29
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
30
+ should probably proofread and complete it, then remove this comment. -->
31
+
32
+ # Whisper Small Ko to En
33
+
34
+ This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Gentlemen dataset.
35
+ It achieves the following results on the evaluation set:
36
+ - Loss: 1.3270
37
+ - Bleu: 0.1392
38
+
39
+ ## Model description
40
+
41
+ More information needed
42
+
43
+ ## Intended uses & limitations
44
+
45
+ More information needed
46
+
47
+ ## Training and evaluation data
48
+
49
+ More information needed
50
+
51
+ ## Training procedure
52
+
53
+ ### Training hyperparameters
54
+
55
+ The following hyperparameters were used during training:
56
+ - learning_rate: 1e-05
57
+ - train_batch_size: 8
58
+ - eval_batch_size: 8
59
+ - seed: 42
60
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
61
+ - lr_scheduler_type: linear
62
+ - lr_scheduler_warmup_steps: 500
63
+ - training_steps: 5000
64
+ - mixed_precision_training: Native AMP
65
+
66
+ ### Training results
67
+
68
+ | Training Loss | Epoch | Step | Validation Loss | Bleu |
69
+ |:-------------:|:------:|:----:|:---------------:|:------:|
70
+ | 0.8182 | 0.2253 | 1000 | 1.6561 | 0.1004 |
71
+ | 1.4212 | 0.4507 | 2000 | 1.4204 | 0.1195 |
72
+ | 1.3578 | 0.6760 | 3000 | 1.3638 | 0.1320 |
73
+ | 1.3446 | 0.9013 | 4000 | 1.3265 | 0.1356 |
74
+ | 0.9391 | 1.1266 | 5000 | 1.3270 | 0.1392 |
75
+
76
+
77
+ ### Framework versions
78
+
79
+ - Transformers 4.45.2
80
+ - Pytorch 2.5.1+cu121
81
+ - Datasets 3.2.0
82
+ - Tokenizers 0.20.3