diegoale1248 commited on
Commit
76fc559
·
1 Parent(s): 7b0ad89

Model save

Browse files
README.md CHANGED
@@ -1,19 +1,24 @@
1
  ---
2
- license: mit
3
- base_model: neuralmind/bert-base-portuguese-cased
4
  tags:
5
  - generated_from_trainer
 
 
 
6
  model-index:
7
- - name: categories-estimation
8
  results: []
9
  ---
10
 
11
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
12
  should probably proofread and complete it, then remove this comment. -->
13
 
14
- # categories-estimation
15
 
16
- This model is a fine-tuned version of [neuralmind/bert-base-portuguese-cased](https://huggingface.co/neuralmind/bert-base-portuguese-cased) on the None dataset.
 
 
 
 
17
 
18
  ## Model description
19
 
@@ -23,18 +28,9 @@ More information needed
23
 
24
  More information needed
25
 
26
- ## Training Metrics
27
 
28
-
29
- ## Evaluation Metrics
30
-
31
- {'eval_loss': 0.3545467257499695,
32
- 'eval_F1': 0.8847876543649995,
33
- 'eval_Accuracy': 0.9213957759412305,
34
- 'eval_runtime': 14.8305,
35
- 'eval_samples_per_second': 367.149,
36
- 'eval_steps_per_second': 45.919,
37
- 'epoch': 1.
38
 
39
  ## Training procedure
40
 
@@ -47,7 +43,81 @@ The following hyperparameters were used during training:
47
  - seed: 42
48
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
49
  - lr_scheduler_type: linear
50
- - num_epochs: 1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51
 
52
  ### Framework versions
53
 
 
1
  ---
 
 
2
  tags:
3
  - generated_from_trainer
4
+ metrics:
5
+ - f1
6
+ - accuracy
7
  model-index:
8
+ - name: finetuned-bert-categories-estimation
9
  results: []
10
  ---
11
 
12
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
  should probably proofread and complete it, then remove this comment. -->
14
 
15
+ # finetuned-bert-categories-estimation
16
 
17
+ This model was trained from scratch on the None dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 0.4354
20
+ - F1: 0.9168
21
+ - Accuracy: 0.9383
22
 
23
  ## Model description
24
 
 
28
 
29
  More information needed
30
 
31
+ ## Training and evaluation data
32
 
33
+ More information needed
 
 
 
 
 
 
 
 
 
34
 
35
  ## Training procedure
36
 
 
43
  - seed: 42
44
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
45
  - lr_scheduler_type: linear
46
+ - num_epochs: 10
47
+
48
+ ### Training results
49
+
50
+ | Training Loss | Epoch | Step | Validation Loss | F1 | Accuracy |
51
+ |:-------------:|:-----:|:----:|:---------------:|:------:|:--------:|
52
+ | 0.1375 | 0.15 | 100 | 0.4396 | 0.8593 | 0.9085 |
53
+ | 0.1136 | 0.29 | 200 | 0.4757 | 0.8533 | 0.8988 |
54
+ | 0.1273 | 0.44 | 300 | 0.4634 | 0.8637 | 0.9054 |
55
+ | 0.1202 | 0.59 | 400 | 0.4444 | 0.8638 | 0.9091 |
56
+ | 0.1372 | 0.73 | 500 | 0.4322 | 0.8708 | 0.9106 |
57
+ | 0.1598 | 0.88 | 600 | 0.4442 | 0.8734 | 0.9115 |
58
+ | 0.1918 | 1.03 | 700 | 0.4158 | 0.8715 | 0.9107 |
59
+ | 0.1404 | 1.17 | 800 | 0.4295 | 0.8772 | 0.9115 |
60
+ | 0.1479 | 1.32 | 900 | 0.4024 | 0.8849 | 0.9190 |
61
+ | 0.1374 | 1.47 | 1000 | 0.4125 | 0.8798 | 0.9170 |
62
+ | 0.1504 | 1.62 | 1100 | 0.3967 | 0.8857 | 0.9201 |
63
+ | 0.1204 | 1.76 | 1200 | 0.3960 | 0.8860 | 0.9201 |
64
+ | 0.1449 | 1.91 | 1300 | 0.4093 | 0.8890 | 0.9177 |
65
+ | 0.1208 | 2.06 | 1400 | 0.4064 | 0.8841 | 0.9203 |
66
+ | 0.0884 | 2.2 | 1500 | 0.4128 | 0.8881 | 0.9203 |
67
+ | 0.1073 | 2.35 | 1600 | 0.3934 | 0.8940 | 0.9243 |
68
+ | 0.0937 | 2.5 | 1700 | 0.4158 | 0.8888 | 0.9196 |
69
+ | 0.0931 | 2.64 | 1800 | 0.4028 | 0.8903 | 0.9230 |
70
+ | 0.0967 | 2.79 | 1900 | 0.4015 | 0.9001 | 0.9269 |
71
+ | 0.094 | 2.94 | 2000 | 0.4116 | 0.8970 | 0.9258 |
72
+ | 0.074 | 3.08 | 2100 | 0.4183 | 0.8978 | 0.9251 |
73
+ | 0.0593 | 3.23 | 2200 | 0.4177 | 0.8971 | 0.9262 |
74
+ | 0.085 | 3.38 | 2300 | 0.3933 | 0.9092 | 0.9306 |
75
+ | 0.0764 | 3.52 | 2400 | 0.4245 | 0.9008 | 0.9276 |
76
+ | 0.0849 | 3.67 | 2500 | 0.4044 | 0.8983 | 0.9273 |
77
+ | 0.0833 | 3.82 | 2600 | 0.4089 | 0.9021 | 0.9286 |
78
+ | 0.1134 | 3.96 | 2700 | 0.4212 | 0.8989 | 0.9251 |
79
+ | 0.0572 | 4.11 | 2800 | 0.4295 | 0.9056 | 0.9275 |
80
+ | 0.0651 | 4.26 | 2900 | 0.4111 | 0.9010 | 0.9267 |
81
+ | 0.0524 | 4.41 | 3000 | 0.3951 | 0.9064 | 0.9309 |
82
+ | 0.0572 | 4.55 | 3100 | 0.4091 | 0.9030 | 0.9282 |
83
+ | 0.0585 | 4.7 | 3200 | 0.4222 | 0.9003 | 0.9275 |
84
+ | 0.0615 | 4.85 | 3300 | 0.4134 | 0.9056 | 0.9311 |
85
+ | 0.0663 | 4.99 | 3400 | 0.4200 | 0.9046 | 0.9293 |
86
+ | 0.028 | 5.14 | 3500 | 0.4131 | 0.9057 | 0.9331 |
87
+ | 0.0196 | 5.29 | 3600 | 0.4436 | 0.9017 | 0.9293 |
88
+ | 0.0237 | 5.43 | 3700 | 0.4316 | 0.9054 | 0.9309 |
89
+ | 0.0278 | 5.58 | 3800 | 0.4364 | 0.9017 | 0.9280 |
90
+ | 0.0352 | 5.73 | 3900 | 0.4294 | 0.9021 | 0.9284 |
91
+ | 0.0547 | 5.87 | 4000 | 0.4202 | 0.9098 | 0.9320 |
92
+ | 0.0512 | 6.02 | 4100 | 0.4280 | 0.9083 | 0.9311 |
93
+ | 0.0201 | 6.17 | 4200 | 0.4336 | 0.9099 | 0.9311 |
94
+ | 0.0192 | 6.31 | 4300 | 0.4329 | 0.9078 | 0.9330 |
95
+ | 0.0167 | 6.46 | 4400 | 0.4318 | 0.9091 | 0.9331 |
96
+ | 0.0305 | 6.61 | 4500 | 0.4288 | 0.9085 | 0.9333 |
97
+ | 0.0178 | 6.75 | 4600 | 0.4269 | 0.9111 | 0.9337 |
98
+ | 0.0268 | 6.9 | 4700 | 0.4267 | 0.9114 | 0.9337 |
99
+ | 0.0207 | 7.05 | 4800 | 0.4281 | 0.9115 | 0.9344 |
100
+ | 0.0116 | 7.2 | 4900 | 0.4329 | 0.9111 | 0.9348 |
101
+ | 0.0104 | 7.34 | 5000 | 0.4445 | 0.9089 | 0.9335 |
102
+ | 0.0149 | 7.49 | 5100 | 0.4394 | 0.9114 | 0.9343 |
103
+ | 0.0084 | 7.64 | 5200 | 0.4367 | 0.9145 | 0.9350 |
104
+ | 0.0151 | 7.78 | 5300 | 0.4460 | 0.9087 | 0.9319 |
105
+ | 0.012 | 7.93 | 5400 | 0.4368 | 0.9130 | 0.9354 |
106
+ | 0.0083 | 8.08 | 5500 | 0.4354 | 0.9122 | 0.9350 |
107
+ | 0.0089 | 8.22 | 5600 | 0.4319 | 0.9120 | 0.9344 |
108
+ | 0.0063 | 8.37 | 5700 | 0.4304 | 0.9139 | 0.9359 |
109
+ | 0.0089 | 8.52 | 5800 | 0.4297 | 0.9136 | 0.9352 |
110
+ | 0.0081 | 8.66 | 5900 | 0.4348 | 0.9128 | 0.9348 |
111
+ | 0.0084 | 8.81 | 6000 | 0.4361 | 0.9126 | 0.9354 |
112
+ | 0.0051 | 8.96 | 6100 | 0.4373 | 0.9140 | 0.9366 |
113
+ | 0.0049 | 9.1 | 6200 | 0.4374 | 0.9167 | 0.9376 |
114
+ | 0.0049 | 9.25 | 6300 | 0.4349 | 0.9170 | 0.9377 |
115
+ | 0.004 | 9.4 | 6400 | 0.4358 | 0.9174 | 0.9385 |
116
+ | 0.0046 | 9.54 | 6500 | 0.4352 | 0.9175 | 0.9385 |
117
+ | 0.0108 | 9.69 | 6600 | 0.4355 | 0.9171 | 0.9381 |
118
+ | 0.0039 | 9.84 | 6700 | 0.4357 | 0.9168 | 0.9383 |
119
+ | 0.0053 | 9.99 | 6800 | 0.4354 | 0.9168 | 0.9383 |
120
+
121
 
122
  ### Framework versions
123
 
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:df88a1cbbd8d3e330fcc208298dd91563db221059f40f3c3258f56a2d3cd729a
3
  size 436112884
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9431d051a0035c937bfe0af7ae1bd63ff2271f9cb242da282e6fa5beea9b6969
3
  size 436112884
runs/Dec12_02-14-44_3f2f6cff86c3/events.out.tfevents.1702347299.3f2f6cff86c3.330.4 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:468447c653d71f8076885db4c2bc84775a24055842ec806c69b3ae5124d5ed18
3
- size 46156
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e72b4454a9990d92b64a6910eee3b9ddaf2653a986892464f82992ac23817e2a
3
+ size 48088
runs/Dec12_02-14-44_3f2f6cff86c3/events.out.tfevents.1702350176.3f2f6cff86c3.330.5 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:941a3b14e8c05e5ca3ac53e42a62fbc39189ec6d061820956dc24c6d163a6440
3
+ size 457