|
from typing import Dict, List, Any |
|
import torch |
|
from base64 import b64decode |
|
from diffusers import AutoencoderKLHunyuanVideo |
|
from diffusers.video_processor import VideoProcessor |
|
from diffusers.utils import export_to_video |
|
|
|
|
|
class EndpointHandler: |
|
def __init__(self, path=""): |
|
self.device = "cpu" |
|
self.dtype = torch.float32 |
|
self.vae = ( |
|
AutoencoderKLHunyuanVideo.from_pretrained( |
|
path, subfolder="vae", torch_dtype=self.dtype |
|
) |
|
.to(self.device, self.dtype) |
|
.eval() |
|
) |
|
|
|
self.vae_scale_factor_spatial = self.vae.spatial_compression_ratio |
|
self.video_processor = VideoProcessor( |
|
vae_scale_factor=self.vae_scale_factor_spatial |
|
) |
|
|
|
@torch.no_grad() |
|
def __call__(self, data: Any) -> List[List[Dict[str, float]]]: |
|
""" |
|
Args: |
|
data (:obj:): |
|
includes the input data and the parameters for the inference. |
|
""" |
|
tensor = data["inputs"] |
|
tensor = b64decode(tensor.encode("utf-8")) |
|
parameters = data.get("parameters", {}) |
|
if "shape" not in parameters: |
|
raise ValueError("Expected `shape` in parameters.") |
|
if "dtype" not in parameters: |
|
raise ValueError("Expected `dtype` in parameters.") |
|
|
|
DTYPE_MAP = { |
|
"float16": torch.float16, |
|
"float32": torch.float32, |
|
"bfloat16": torch.bfloat16, |
|
} |
|
|
|
shape = parameters.get("shape") |
|
dtype = DTYPE_MAP.get(parameters.get("dtype")) |
|
tensor = torch.frombuffer(bytearray(tensor), dtype=dtype).reshape(shape) |
|
|
|
tensor = tensor.to(self.device, self.dtype) |
|
|
|
tensor = tensor / self.vae.config.scaling_factor |
|
|
|
with torch.no_grad(): |
|
frames = self.vae.decode(tensor, return_dict=False)[0] |
|
|
|
frames = self.video_processor.postprocess_video(frames, output_type="pil")[0] |
|
|
|
path = export_to_video(frames, fps=15) |
|
with open(path, "rb") as f: |
|
video = f.read() |
|
|
|
return video |
|
|