File size: 2,930 Bytes
a55bafa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 |
#!/usr/bin/env python3
from diffusers import DiffusionPipeline, DDIMScheduler
import argparse
import torch
from datasets import load_dataset
import PIL
IMAGE_OUTPUT_SIZE = (256, 256)
NUM_INFERENCE_STEPS = 100
def resize(image: PIL.Image):
return image.resize(IMAGE_OUTPUT_SIZE, resample=PIL.Image.Resampling.LANCZOS)
def get_sd_eval(ckpt, guidance_scale=7.5):
pipe = DiffusionPipeline.from_pretrained(ckpt, torch_dtype=torch.float16)
pipe.to("cuda")
pipe.scheduler = DDIMScheduler.from_config(pipe.config)
def sd_eval(prompt):
images = pipe(prompt, num_inference_steps=100, guidance_scale=guidance_scale).images
images = [resize(image) for image in images]
return images
return sd_eval
def get_karlo_eval(ckpt):
pipe = DiffusionPipeline.from_pretrained(ckpt, torch_dtype=torch.float16)
pipe.to("cuda")
def karlo_eval(prompt):
images = pipe(prompt, prior_num_inference_steps=50, decoder_num_inference_steps=100).images
return images
return karlo_eval
def get_if_eval(ckpt):
pipe_low = DiffusionPipeline.from_pretrained(ckpt, torch_dtype=torch.float16)
pipe_low.enable_model_cpu_offload()
pipe_up = DiffusionPipeline.from_pretrained("DeepFloyd/IF-II-L-v1.0", text_encoder=pipe_low.text_encoder, torch_dtype=torch.float16)
pipe_up.enable_model_cpu_offload()
def sd_eval(prompt):
images = pipe_low(prompt, num_inference_steps=100, output_type="pt").images
images = pipe_up(promtp=prompt, images=images, num_inference_steps=100).images
return images
return sd_eval
MODELS = {
"runwayml/stable-diffusion-v1-5": get_sd_eval,
"stabilityai/stable-diffusion-v2-1": get_sd_eval,
"kakaobrain/karlo-alpha": get_karlo_eval,
"DeepFloyd/IF-I-XL-v1.0": get_if_eval,
}
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Run Parti Prompt Evaluation')
parser.add_argument('model_repo_or_id', type=str, help='ID or URL of the model repository.', required=True)
parser.add_argument('--dataset_repo_or_id', type=str, default='diffusers/prompt_generations', help='ID or URL of the dataset repository (default: "diffusers/prompt_generations")')
parser.add_argument('--batch_size', type=int, default=8, help="Batch size for the eval function")
parser.add_argument('--upload_to_hub', action='store_true', help='whether to upload the dataset to the Hugging Face dataset hub')
args = parser.parse_args()
eval_fn = MODELS[args.model_repo_or_id](args.model_repo_or_id)
dataset = load_dataset("nateraw/parti-prompts")
def map_fn(batch):
batch["images"] = eval_fn(batch["prompt"])
return batch
dataset_images = dataset.map(map_fn, batched=True, batch_size=8)
if args.upload_to_hub:
dataset.push_to_hub(args.dataset_repo_or_id)
else:
dataset.save_to_disk(args.dataset_repo_or_id.split("/")[-1])
|