|
|
|
from huggingface_hub import HfApi |
|
import torch |
|
|
|
|
|
import requests |
|
|
|
from diffusers import DDIMScheduler, StableDiffusionPix2PixZeroPipeline |
|
|
|
api = HfApi() |
|
|
|
|
|
def download(embedding_url, local_filepath): |
|
r = requests.get(embedding_url) |
|
with open(local_filepath, "wb") as f: |
|
f.write(r.content) |
|
|
|
|
|
model_ckpt = "CompVis/stable-diffusion-v1-4" |
|
pipeline = StableDiffusionPix2PixZeroPipeline.from_pretrained( |
|
model_ckpt, conditions_input_image=False, torch_dtype=torch.float16 |
|
) |
|
pipeline.scheduler = DDIMScheduler.from_config(pipeline.scheduler.config) |
|
pipeline.to("cuda") |
|
|
|
|
|
prompt = "a high resolution painting of a cat in the style of van gough" |
|
source_embedding_url = "https://github.com/pix2pixzero/pix2pix-zero/raw/main/assets/embeddings_sd_1.4/cat.pt" |
|
target_embedding_url = "https://github.com/pix2pixzero/pix2pix-zero/raw/main/assets/embeddings_sd_1.4/dog.pt" |
|
|
|
for url in [source_embedding_url, target_embedding_url]: |
|
download(url, url.split("/")[-1]) |
|
|
|
source_embeds = torch.load(source_embedding_url.split("/")[-1]) |
|
target_embeds = torch.load(target_embedding_url.split("/")[-1]) |
|
|
|
image = pipeline( |
|
prompt, |
|
source_embeds=source_embeds, |
|
target_embeds=target_embeds, |
|
num_inference_steps=50, |
|
cross_attention_guidance_amount=0.15, |
|
).images[0] |
|
|
|
path = "/home/patrick_huggingface_co/images/aa.png" |
|
image.save(path) |
|
|
|
api.upload_file( |
|
path_or_fileobj=path, |
|
path_in_repo=path.split("/")[-1], |
|
repo_id="patrickvonplaten/images", |
|
repo_type="dataset", |
|
) |
|
print("https://huggingface.co/datasets/patrickvonplaten/images/blob/main/aa.png") |
|
|