Merge branch 'main' of https://huggingface.co/diffusers/tools
Browse files- controlnet_img2img.py +77 -0
- parti_prompts.py +26 -19
controlnet_img2img.py
ADDED
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
import torch
|
3 |
+
import os
|
4 |
+
from huggingface_hub import HfApi
|
5 |
+
from pathlib import Path
|
6 |
+
from diffusers.utils import load_image
|
7 |
+
import cv2
|
8 |
+
from PIL import Image
|
9 |
+
import numpy as np
|
10 |
+
|
11 |
+
from diffusers import (
|
12 |
+
ControlNetModel,
|
13 |
+
StableDiffusionControlNetImg2ImgPipeline,
|
14 |
+
StableDiffusionControlNetInpaintPipeline,
|
15 |
+
DiffusionPipeline,
|
16 |
+
UniPCMultistepScheduler,
|
17 |
+
)
|
18 |
+
import sys
|
19 |
+
|
20 |
+
checkpoint = sys.argv[1]
|
21 |
+
|
22 |
+
# image = load_image(
|
23 |
+
# "https://huggingface.co/lllyasviel/sd-controlnet-canny/resolve/main/images/bird.png"
|
24 |
+
# )
|
25 |
+
|
26 |
+
img_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png"
|
27 |
+
mask_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png"
|
28 |
+
image = load_image(img_url).resize((512, 512))
|
29 |
+
mask_image = load_image(mask_url).resize((512, 512))
|
30 |
+
|
31 |
+
np_image = np.array(image)
|
32 |
+
|
33 |
+
low_threshold = 100
|
34 |
+
high_threshold = 200
|
35 |
+
|
36 |
+
np_image = cv2.Canny(np_image, low_threshold, high_threshold)
|
37 |
+
np_image = np_image[:, :, None]
|
38 |
+
np_image = np.concatenate([np_image, np_image, np_image], axis=2)
|
39 |
+
canny_image = Image.fromarray(np_image)
|
40 |
+
|
41 |
+
controlnet = ControlNetModel.from_pretrained(checkpoint, torch_dtype=torch.float16)
|
42 |
+
# pipe = DiffusionPipeline.from_pretrained(
|
43 |
+
# "runwayml/stable-diffusion-inpainting", controlnet=controlnet, torch_dtype=torch.float16, custom_pipeline="stable_diffusion_controlnet_inpaint"
|
44 |
+
# )
|
45 |
+
pipe = StableDiffusionControlNetInpaintPipeline.from_pretrained(
|
46 |
+
"runwayml/stable-diffusion-inpainting",
|
47 |
+
controlnet=controlnet,
|
48 |
+
torch_dtype=torch.float16,
|
49 |
+
)
|
50 |
+
|
51 |
+
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
|
52 |
+
pipe.enable_model_cpu_offload()
|
53 |
+
|
54 |
+
generator = torch.manual_seed(0)
|
55 |
+
text_prompt="a blue dog"
|
56 |
+
# out_image = pipe("A blue dog", num_inference_steps=50, generator=generator, image=image, mask_image=mask_image, controlnet_conditioning_image=canny_image).images[0]
|
57 |
+
out_image = pipe(
|
58 |
+
text_prompt,
|
59 |
+
num_inference_steps=20,
|
60 |
+
generator=generator,
|
61 |
+
image=image,
|
62 |
+
mask_image=mask_image,
|
63 |
+
control_image=canny_image,
|
64 |
+
).images[0]
|
65 |
+
|
66 |
+
path = os.path.join(Path.home(), "images", "aa.png")
|
67 |
+
out_image.save(path)
|
68 |
+
|
69 |
+
api = HfApi()
|
70 |
+
|
71 |
+
api.upload_file(
|
72 |
+
path_or_fileobj=path,
|
73 |
+
path_in_repo=path.split("/")[-1],
|
74 |
+
repo_id="patrickvonplaten/images",
|
75 |
+
repo_type="dataset",
|
76 |
+
)
|
77 |
+
print("https://huggingface.co/datasets/patrickvonplaten/images/blob/main/aa.png")
|
parti_prompts.py
CHANGED
@@ -1,6 +1,7 @@
|
|
1 |
#!/usr/bin/env python3
|
2 |
from diffusers import DiffusionPipeline, DDIMScheduler
|
3 |
import argparse
|
|
|
4 |
import torch
|
5 |
from datasets import load_dataset
|
6 |
import PIL
|
@@ -12,12 +13,12 @@ def resize(image: PIL.Image):
|
|
12 |
return image.resize(IMAGE_OUTPUT_SIZE, resample=PIL.Image.Resampling.LANCZOS)
|
13 |
|
14 |
def get_sd_eval(ckpt, guidance_scale=7.5):
|
15 |
-
pipe = DiffusionPipeline.from_pretrained(ckpt, torch_dtype=torch.float16)
|
16 |
pipe.to("cuda")
|
17 |
-
pipe.scheduler = DDIMScheduler.from_config(pipe.config)
|
18 |
|
19 |
-
def sd_eval(prompt):
|
20 |
-
images = pipe(prompt, num_inference_steps=
|
21 |
images = [resize(image) for image in images]
|
22 |
return images
|
23 |
|
@@ -28,28 +29,29 @@ def get_karlo_eval(ckpt):
|
|
28 |
pipe.to("cuda")
|
29 |
|
30 |
def karlo_eval(prompt):
|
31 |
-
images = pipe(prompt, prior_num_inference_steps=50, decoder_num_inference_steps=
|
32 |
return images
|
33 |
|
34 |
return karlo_eval
|
35 |
|
36 |
def get_if_eval(ckpt):
|
37 |
-
pipe_low = DiffusionPipeline.from_pretrained(ckpt, torch_dtype=torch.float16)
|
38 |
pipe_low.enable_model_cpu_offload()
|
39 |
|
40 |
-
pipe_up = DiffusionPipeline.from_pretrained("DeepFloyd/IF-II-L-v1.0", text_encoder=pipe_low.text_encoder, torch_dtype=torch.float16)
|
41 |
pipe_up.enable_model_cpu_offload()
|
42 |
|
43 |
-
def
|
44 |
-
|
45 |
-
images =
|
|
|
46 |
return images
|
47 |
|
48 |
-
return
|
49 |
|
50 |
MODELS = {
|
51 |
"runwayml/stable-diffusion-v1-5": get_sd_eval,
|
52 |
-
"stabilityai/stable-diffusion-
|
53 |
"kakaobrain/karlo-alpha": get_karlo_eval,
|
54 |
"DeepFloyd/IF-I-XL-v1.0": get_if_eval,
|
55 |
}
|
@@ -59,24 +61,29 @@ MODELS = {
|
|
59 |
|
60 |
if __name__ == "__main__":
|
61 |
parser = argparse.ArgumentParser(description='Run Parti Prompt Evaluation')
|
62 |
-
parser.add_argument('model_repo_or_id', type=str, help='ID or URL of the model repository.'
|
63 |
parser.add_argument('--dataset_repo_or_id', type=str, default='diffusers/prompt_generations', help='ID or URL of the dataset repository (default: "diffusers/prompt_generations")')
|
64 |
parser.add_argument('--batch_size', type=int, default=8, help="Batch size for the eval function")
|
65 |
parser.add_argument('--upload_to_hub', action='store_true', help='whether to upload the dataset to the Hugging Face dataset hub')
|
|
|
66 |
|
67 |
args = parser.parse_args()
|
68 |
|
69 |
-
|
|
|
70 |
|
71 |
-
|
72 |
|
73 |
def map_fn(batch):
|
74 |
-
|
|
|
|
|
|
|
75 |
return batch
|
76 |
|
77 |
-
dataset_images = dataset.map(map_fn, batched=True, batch_size=
|
78 |
|
79 |
if args.upload_to_hub:
|
80 |
-
|
81 |
else:
|
82 |
-
|
|
|
1 |
#!/usr/bin/env python3
|
2 |
from diffusers import DiffusionPipeline, DDIMScheduler
|
3 |
import argparse
|
4 |
+
from diffusers.pipelines.stable_diffusion import safety_checker
|
5 |
import torch
|
6 |
from datasets import load_dataset
|
7 |
import PIL
|
|
|
13 |
return image.resize(IMAGE_OUTPUT_SIZE, resample=PIL.Image.Resampling.LANCZOS)
|
14 |
|
15 |
def get_sd_eval(ckpt, guidance_scale=7.5):
|
16 |
+
pipe = DiffusionPipeline.from_pretrained(ckpt, torch_dtype=torch.float16, safety_checker=None)
|
17 |
pipe.to("cuda")
|
18 |
+
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
|
19 |
|
20 |
+
def sd_eval(prompt, generator=None):
|
21 |
+
images = pipe(prompt, generator=generator, num_inference_steps=NUM_INFERENCE_STEPS, guidance_scale=guidance_scale).images
|
22 |
images = [resize(image) for image in images]
|
23 |
return images
|
24 |
|
|
|
29 |
pipe.to("cuda")
|
30 |
|
31 |
def karlo_eval(prompt):
|
32 |
+
images = pipe(prompt, prior_num_inference_steps=50, decoder_num_inference_steps=NUM_INFERENCE_STEPS).images
|
33 |
return images
|
34 |
|
35 |
return karlo_eval
|
36 |
|
37 |
def get_if_eval(ckpt):
|
38 |
+
pipe_low = DiffusionPipeline.from_pretrained(ckpt, safety_checker=None, watermarker=None, torch_dtype=torch.float16, variant="fp16")
|
39 |
pipe_low.enable_model_cpu_offload()
|
40 |
|
41 |
+
pipe_up = DiffusionPipeline.from_pretrained("DeepFloyd/IF-II-L-v1.0", safety_checker=None, watermarker=None, text_encoder=pipe_low.text_encoder, torch_dtype=torch.float16, variant="fp16")
|
42 |
pipe_up.enable_model_cpu_offload()
|
43 |
|
44 |
+
def if_eval(prompt, generator=None):
|
45 |
+
prompt_embeds, negative_prompt_embeds = pipe_low.encode_prompt(prompt)
|
46 |
+
images = pipe_low(prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, num_inference_steps=NUM_INFERENCE_STEPS, generator=generator, output_type="pt").images
|
47 |
+
images = pipe_up(prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, image=images, num_inference_steps=NUM_INFERENCE_STEPS, generator=generator).images
|
48 |
return images
|
49 |
|
50 |
+
return if_eval
|
51 |
|
52 |
MODELS = {
|
53 |
"runwayml/stable-diffusion-v1-5": get_sd_eval,
|
54 |
+
"stabilityai/stable-diffusion-2-1": get_sd_eval,
|
55 |
"kakaobrain/karlo-alpha": get_karlo_eval,
|
56 |
"DeepFloyd/IF-I-XL-v1.0": get_if_eval,
|
57 |
}
|
|
|
61 |
|
62 |
if __name__ == "__main__":
|
63 |
parser = argparse.ArgumentParser(description='Run Parti Prompt Evaluation')
|
64 |
+
parser.add_argument('model_repo_or_id', type=str, help='ID or URL of the model repository.')
|
65 |
parser.add_argument('--dataset_repo_or_id', type=str, default='diffusers/prompt_generations', help='ID or URL of the dataset repository (default: "diffusers/prompt_generations")')
|
66 |
parser.add_argument('--batch_size', type=int, default=8, help="Batch size for the eval function")
|
67 |
parser.add_argument('--upload_to_hub', action='store_true', help='whether to upload the dataset to the Hugging Face dataset hub')
|
68 |
+
parser.add_argument('--seed', type=int, default=0, help='Random seed')
|
69 |
|
70 |
args = parser.parse_args()
|
71 |
|
72 |
+
dataset = load_dataset("nateraw/parti-prompts")["train"]
|
73 |
+
# dataset = dataset.select(range(4))
|
74 |
|
75 |
+
eval_fn = MODELS[args.model_repo_or_id](args.model_repo_or_id)
|
76 |
|
77 |
def map_fn(batch):
|
78 |
+
generators = [torch.Generator(device="cuda").manual_seed(args.seed) for _ in range(args.batch_size)]
|
79 |
+
batch["images"] = eval_fn(batch["Prompt"], generator=generators)
|
80 |
+
batch["model_name"] = len(batch["images"]) * [args.model_repo_or_id]
|
81 |
+
batch["seed"] = len(batch["images"]) * [args.seed]
|
82 |
return batch
|
83 |
|
84 |
+
dataset_images = dataset.map(map_fn, batched=True, batch_size=args.batch_size)
|
85 |
|
86 |
if args.upload_to_hub:
|
87 |
+
dataset_images.push_to_hub(args.dataset_repo_or_id)
|
88 |
else:
|
89 |
+
dataset_images.save_to_disk(args.dataset_repo_or_id.split("/")[-1])
|