Commit
·
c56864f
1
Parent(s):
6421583
adapt controlnet script
Browse files- 1 +0 -66
- control_net_canny.py +2 -4
1
DELETED
@@ -1,66 +0,0 @@
|
|
1 |
-
#!/usr/bin/env python3
|
2 |
-
from diffusers import DiffusionPipeline, EulerDiscreteScheduler, StableDiffusionPipeline, KDPM2DiscreteScheduler, StableDiffusionImg2ImgPipeline, HeunDiscreteScheduler, KDPM2AncestralDiscreteScheduler, DDIMScheduler
|
3 |
-
from diffusers import StableDiffusionXLPipeline, StableDiffusionXLImg2ImgPipeline
|
4 |
-
import time
|
5 |
-
from pytorch_lightning import seed_everything
|
6 |
-
import os
|
7 |
-
from huggingface_hub import HfApi
|
8 |
-
# from compel import Compel
|
9 |
-
import torch
|
10 |
-
import sys
|
11 |
-
from pathlib import Path
|
12 |
-
import requests
|
13 |
-
from PIL import Image
|
14 |
-
from io import BytesIO
|
15 |
-
|
16 |
-
api = HfApi()
|
17 |
-
start_time = time.time()
|
18 |
-
|
19 |
-
use_refiner = bool(int(sys.argv[1]))
|
20 |
-
use_diffusers = True
|
21 |
-
|
22 |
-
if use_diffusers:
|
23 |
-
start_time = time.time()
|
24 |
-
pipe = StableDiffusionXLPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-0.9", torch_dtype=torch.float16, variant="fp16", use_safetensors=True, local_files_only=True)
|
25 |
-
pipe.to("cuda")
|
26 |
-
|
27 |
-
if use_refiner:
|
28 |
-
refiner = StableDiffusionXLImg2ImgPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-0.9", torch_dtype=torch.float16, use_safetensors=True, variant="fp16")
|
29 |
-
refiner.to("cuda")
|
30 |
-
# refiner.enable_sequential_cpu_offload()
|
31 |
-
else:
|
32 |
-
pipe = StableDiffusionXLPipeline.from_single_file("https://huggingface.co/stabilityai/stable-diffusion-xl-base-0.9/blob/main/sd_xl_base_0.9.safetensors", torch_dtype=torch.float16, use_safetensors=True)
|
33 |
-
pipe.to("cuda")
|
34 |
-
|
35 |
-
if use_refiner:
|
36 |
-
refiner = StableDiffusionXLImg2ImgPipeline.from_single_file("https://huggingface.co/stabilityai/stable-diffusion-xl-refiner-0.9/blob/main/sd_xl_refiner_0.9.safetensors", torch_dtype=torch.float16, use_safetensors=True)
|
37 |
-
refiner.to("cuda")
|
38 |
-
|
39 |
-
|
40 |
-
prompt = "An astronaut riding a green horse on Mars"
|
41 |
-
for steps in [24, 27, 31]:
|
42 |
-
for denoising_end in [0.63, 0.66, 0.67, 0.71]:
|
43 |
-
seed = 0
|
44 |
-
seed_everything(seed)
|
45 |
-
image = pipe(prompt=prompt, num_inference_steps=40, denoising_end=0.675, output_type="latent" if use_refiner else "pil").images[0]
|
46 |
-
# image = pipe(prompt=prompt, output_type="latent" if use_refiner else "pil").images[0]
|
47 |
-
|
48 |
-
if use_refiner:
|
49 |
-
image = refiner(prompt=prompt, num_inference_steps=40, denoising_start=0.675, image=image[None, :]).images[0]
|
50 |
-
|
51 |
-
# pipe.unet.to(memory_format=torch.channels_last)
|
52 |
-
# pipe(prompt=prompt, num_inference_steps=2).images[0]
|
53 |
-
|
54 |
-
# image = pipe(prompt=prompt, num_images_per_prompt=1, num_inference_steps=40, output_type="latent").images
|
55 |
-
|
56 |
-
file_name = f"aaa_{seed}"
|
57 |
-
path = os.path.join(Path.home(), "images", "ediffi_sdxl", f"{file_name}.png")
|
58 |
-
image.save(path)
|
59 |
-
|
60 |
-
api.upload_file(
|
61 |
-
path_or_fileobj=path,
|
62 |
-
path_in_repo=path.split("/")[-1],
|
63 |
-
repo_id="patrickvonplaten/images",
|
64 |
-
repo_type="dataset",
|
65 |
-
)
|
66 |
-
print(f"https://huggingface.co/datasets/patrickvonplaten/images/blob/main/ediffi_sdxl/{file_name}.png")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
control_net_canny.py
CHANGED
@@ -33,14 +33,12 @@ canny_image = Image.fromarray(image)
|
|
33 |
|
34 |
controlnet = ControlNetModel.from_pretrained(checkpoint, torch_dtype=torch.float16)
|
35 |
pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
36 |
-
"
|
37 |
)
|
38 |
-
|
39 |
-
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config)
|
40 |
pipe.enable_model_cpu_offload()
|
41 |
|
42 |
generator = torch.manual_seed(33)
|
43 |
-
out_image = pipe("a blue paradise bird in the jungle",
|
44 |
|
45 |
path = os.path.join(Path.home(), "images", "aa.png")
|
46 |
out_image.save(path)
|
|
|
33 |
|
34 |
controlnet = ControlNetModel.from_pretrained(checkpoint, torch_dtype=torch.float16)
|
35 |
pipe = StableDiffusionControlNetPipeline.from_pretrained(
|
36 |
+
"stabilityai/stable-diffusion-xl-base-0.9", controlnet=[controlnet, controlnet], torch_dtype=torch.float16
|
37 |
)
|
|
|
|
|
38 |
pipe.enable_model_cpu_offload()
|
39 |
|
40 |
generator = torch.manual_seed(33)
|
41 |
+
out_image = pipe("a blue paradise bird in the jungle", generator=generator, image=[canny_image, canny_image]).images[0]
|
42 |
|
43 |
path = os.path.join(Path.home(), "images", "aa.png")
|
44 |
out_image.save(path)
|