Commit
·
f83832c
1
Parent(s):
fbcadae
up
Browse files- run_xl_ediffi.py +23 -4
run_xl_ediffi.py
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
#!/usr/bin/env python3
|
2 |
-
from diffusers import DiffusionPipeline, EulerDiscreteScheduler, StableDiffusionPipeline, KDPM2DiscreteScheduler, StableDiffusionImg2ImgPipeline, HeunDiscreteScheduler, KDPM2AncestralDiscreteScheduler, DDIMScheduler, HeunDiscreteScheduler, DEISMultistepScheduler
|
3 |
from diffusers import DiffusionPipeline
|
4 |
import time
|
5 |
from pytorch_lightning import seed_everything
|
@@ -18,16 +18,35 @@ from torch.nn.functional import fractional_max_pool2d_with_indices
|
|
18 |
api = HfApi()
|
19 |
start_time = time.time()
|
20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
model_id = "stabilityai/stable-diffusion-xl-base-0.9"
|
22 |
pipe_high_noise = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16, variant="fp16", use_safetensors=True, local_files_only=True)
|
23 |
-
pipe_high_noise.scheduler =
|
|
|
24 |
pipe_high_noise.to("cuda")
|
25 |
|
26 |
pipe_low_noise = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-0.9", torch_dtype=torch.float16, use_safetensors=True, variant="fp16")
|
27 |
-
pipe_low_noise.scheduler =
|
|
|
28 |
pipe_low_noise.to("cuda")
|
29 |
|
30 |
-
prompt = "
|
31 |
|
32 |
num_inference_steps = 40
|
33 |
high_noise_frac = 0.8
|
|
|
1 |
#!/usr/bin/env python3
|
2 |
+
from diffusers import DPMSolverMultistepScheduler, DiffusionPipeline, EulerDiscreteScheduler, StableDiffusionPipeline, KDPM2DiscreteScheduler, StableDiffusionImg2ImgPipeline, HeunDiscreteScheduler, KDPM2AncestralDiscreteScheduler, DDIMScheduler, HeunDiscreteScheduler, DEISMultistepScheduler
|
3 |
from diffusers import DiffusionPipeline
|
4 |
import time
|
5 |
from pytorch_lightning import seed_everything
|
|
|
18 |
api = HfApi()
|
19 |
start_time = time.time()
|
20 |
|
21 |
+
random_generator = torch.Generator()
|
22 |
+
random_generator.manual_seed(12345)
|
23 |
+
|
24 |
+
scheduler = DPMSolverMultistepScheduler(
|
25 |
+
beta_start=0.00085,
|
26 |
+
beta_end=0.012,
|
27 |
+
beta_schedule="scaled_linear",
|
28 |
+
prediction_type="epsilon",
|
29 |
+
num_train_timesteps=1000,
|
30 |
+
trained_betas=None,
|
31 |
+
thresholding=False,
|
32 |
+
algorithm_type="dpmsolver++",
|
33 |
+
solver_type="midpoint",
|
34 |
+
lower_order_final=True,
|
35 |
+
use_karras_sigmas=True,
|
36 |
+
)
|
37 |
+
|
38 |
model_id = "stabilityai/stable-diffusion-xl-base-0.9"
|
39 |
pipe_high_noise = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16, variant="fp16", use_safetensors=True, local_files_only=True)
|
40 |
+
# pipe_high_noise.scheduler = EulerDiscreteScheduler.from_config(pipe_high_noise.scheduler.config)
|
41 |
+
pipe_high_noise.scheduler = scheduler
|
42 |
pipe_high_noise.to("cuda")
|
43 |
|
44 |
pipe_low_noise = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-0.9", torch_dtype=torch.float16, use_safetensors=True, variant="fp16")
|
45 |
+
# pipe_low_noise.scheduler = EulerDiscreteScheduler.from_config(pipe_low_noise.scheduler.config)
|
46 |
+
pipe_low_noise.scheduler = scheduler
|
47 |
pipe_low_noise.to("cuda")
|
48 |
|
49 |
+
prompt = "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k"
|
50 |
|
51 |
num_inference_steps = 40
|
52 |
high_noise_frac = 0.8
|