Commit
·
fcc7a59
1
Parent(s):
f1bde35
up
Browse files- run_xl_ediffi.py +35 -9
run_xl_ediffi.py
CHANGED
@@ -18,27 +18,53 @@ from torch.nn.functional import fractional_max_pool2d_with_indices
|
|
18 |
api = HfApi()
|
19 |
start_time = time.time()
|
20 |
|
21 |
-
|
22 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
model_id = "stabilityai/stable-diffusion-xl-base-0.9"
|
25 |
pipe_high_noise = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16, variant="fp16", use_safetensors=True, local_files_only=True)
|
26 |
-
pipe_high_noise.scheduler =
|
27 |
pipe_high_noise.to("cuda")
|
28 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
pipe_low_noise = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-0.9", torch_dtype=torch.float16, use_safetensors=True, variant="fp16")
|
30 |
-
pipe_low_noise.scheduler =
|
31 |
pipe_low_noise.to("cuda")
|
32 |
|
33 |
prompt = "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k"
|
34 |
|
35 |
-
num_inference_steps = 40
|
36 |
-
high_noise_frac = 0.8
|
37 |
|
38 |
-
|
39 |
-
|
|
|
|
|
|
|
40 |
|
41 |
-
image = pipe_high_noise(prompt=prompt, num_inference_steps=num_inference_steps, denoising_end=high_noise_frac, output_type="
|
42 |
image = pipe_low_noise(prompt=prompt, num_inference_steps=num_inference_steps, denoising_start=high_noise_frac, image=image).images[0]
|
43 |
|
44 |
file_name = f"aaa_1"
|
|
|
18 |
api = HfApi()
|
19 |
start_time = time.time()
|
20 |
|
21 |
+
scheduler = DPMSolverMultistepScheduler(
|
22 |
+
beta_start=0.00085,
|
23 |
+
beta_end=0.012,
|
24 |
+
beta_schedule="scaled_linear",
|
25 |
+
prediction_type="epsilon",
|
26 |
+
num_train_timesteps=1000,
|
27 |
+
trained_betas=None,
|
28 |
+
thresholding=False,
|
29 |
+
algorithm_type="dpmsolver++",
|
30 |
+
solver_type="midpoint",
|
31 |
+
lower_order_final=True,
|
32 |
+
use_karras_sigmas=True,
|
33 |
+
)
|
34 |
|
35 |
model_id = "stabilityai/stable-diffusion-xl-base-0.9"
|
36 |
pipe_high_noise = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16, variant="fp16", use_safetensors=True, local_files_only=True)
|
37 |
+
pipe_high_noise.scheduler = scheduler
|
38 |
pipe_high_noise.to("cuda")
|
39 |
|
40 |
+
scheduler = DPMSolverMultistepScheduler(
|
41 |
+
beta_start=0.00085,
|
42 |
+
beta_end=0.012,
|
43 |
+
beta_schedule="scaled_linear",
|
44 |
+
prediction_type="epsilon",
|
45 |
+
num_train_timesteps=1000,
|
46 |
+
trained_betas=None,
|
47 |
+
thresholding=False,
|
48 |
+
algorithm_type="dpmsolver++",
|
49 |
+
solver_type="midpoint",
|
50 |
+
lower_order_final=True,
|
51 |
+
use_karras_sigmas=True,
|
52 |
+
)
|
53 |
+
|
54 |
pipe_low_noise = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-0.9", torch_dtype=torch.float16, use_safetensors=True, variant="fp16")
|
55 |
+
pipe_low_noise.scheduler = scheduler
|
56 |
pipe_low_noise.to("cuda")
|
57 |
|
58 |
prompt = "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k"
|
59 |
|
|
|
|
|
60 |
|
61 |
+
random_generator = torch.Generator()
|
62 |
+
random_generator.manual_seed(0)
|
63 |
+
|
64 |
+
num_inference_steps = 100
|
65 |
+
high_noise_frac = 0.8
|
66 |
|
67 |
+
image = pipe_high_noise(prompt=prompt, num_inference_steps=num_inference_steps, denoising_end=high_noise_frac, output_type="latent").images
|
68 |
image = pipe_low_noise(prompt=prompt, num_inference_steps=num_inference_steps, denoising_start=high_noise_frac, image=image).images[0]
|
69 |
|
70 |
file_name = f"aaa_1"
|