patrickvonplaten commited on
Commit
fcc7a59
·
1 Parent(s): f1bde35
Files changed (1) hide show
  1. run_xl_ediffi.py +35 -9
run_xl_ediffi.py CHANGED
@@ -18,27 +18,53 @@ from torch.nn.functional import fractional_max_pool2d_with_indices
18
  api = HfApi()
19
  start_time = time.time()
20
 
21
- random_generator = torch.Generator()
22
- random_generator.manual_seed(12345)
 
 
 
 
 
 
 
 
 
 
 
23
 
24
  model_id = "stabilityai/stable-diffusion-xl-base-0.9"
25
  pipe_high_noise = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16, variant="fp16", use_safetensors=True, local_files_only=True)
26
- pipe_high_noise.scheduler = DPMSolverMultistepScheduler.from_config(pipe_high_noise.scheduler.config)
27
  pipe_high_noise.to("cuda")
28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
29
  pipe_low_noise = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-0.9", torch_dtype=torch.float16, use_safetensors=True, variant="fp16")
30
- pipe_low_noise.scheduler = pipe_high_noise.scheduler
31
  pipe_low_noise.to("cuda")
32
 
33
  prompt = "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k"
34
 
35
- num_inference_steps = 40
36
- high_noise_frac = 0.8
37
 
38
- # seed = 0
39
- # seed_everything(seed)
 
 
 
40
 
41
- image = pipe_high_noise(prompt=prompt, num_inference_steps=num_inference_steps, denoising_end=high_noise_frac, output_type="pt").images
42
  image = pipe_low_noise(prompt=prompt, num_inference_steps=num_inference_steps, denoising_start=high_noise_frac, image=image).images[0]
43
 
44
  file_name = f"aaa_1"
 
18
  api = HfApi()
19
  start_time = time.time()
20
 
21
+ scheduler = DPMSolverMultistepScheduler(
22
+ beta_start=0.00085,
23
+ beta_end=0.012,
24
+ beta_schedule="scaled_linear",
25
+ prediction_type="epsilon",
26
+ num_train_timesteps=1000,
27
+ trained_betas=None,
28
+ thresholding=False,
29
+ algorithm_type="dpmsolver++",
30
+ solver_type="midpoint",
31
+ lower_order_final=True,
32
+ use_karras_sigmas=True,
33
+ )
34
 
35
  model_id = "stabilityai/stable-diffusion-xl-base-0.9"
36
  pipe_high_noise = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16, variant="fp16", use_safetensors=True, local_files_only=True)
37
+ pipe_high_noise.scheduler = scheduler
38
  pipe_high_noise.to("cuda")
39
 
40
+ scheduler = DPMSolverMultistepScheduler(
41
+ beta_start=0.00085,
42
+ beta_end=0.012,
43
+ beta_schedule="scaled_linear",
44
+ prediction_type="epsilon",
45
+ num_train_timesteps=1000,
46
+ trained_betas=None,
47
+ thresholding=False,
48
+ algorithm_type="dpmsolver++",
49
+ solver_type="midpoint",
50
+ lower_order_final=True,
51
+ use_karras_sigmas=True,
52
+ )
53
+
54
  pipe_low_noise = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-0.9", torch_dtype=torch.float16, use_safetensors=True, variant="fp16")
55
+ pipe_low_noise.scheduler = scheduler
56
  pipe_low_noise.to("cuda")
57
 
58
  prompt = "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k"
59
 
 
 
60
 
61
+ random_generator = torch.Generator()
62
+ random_generator.manual_seed(0)
63
+
64
+ num_inference_steps = 100
65
+ high_noise_frac = 0.8
66
 
67
+ image = pipe_high_noise(prompt=prompt, num_inference_steps=num_inference_steps, denoising_end=high_noise_frac, output_type="latent").images
68
  image = pipe_low_noise(prompt=prompt, num_inference_steps=num_inference_steps, denoising_start=high_noise_frac, image=image).images[0]
69
 
70
  file_name = f"aaa_1"